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－Brief Paper－ 

RECEDING HORIZON H∞ CONTROL FOR SYSTEMS  
WITH A STATE-DELAY 

Young Sam Lee, Soo Hee Han, and Wook Hyun Kwon 

ABSTRACT 

This paper proposes the receding horizon H∞ control (RHHC) for linear 
systems with a state-delay. We first proposes a new cost function for a finite 
horizon dynamic game problem. The proposed cost function includes two ter-
minal weighting terms, each of which is parameterized by a positive definite 
matrix, called a terminal weighting matrix. Secondly, we derive the RHHC 
from the solution to the finite dynamic game problem. Thirdly, we propose an 
LMI condition under which the saddle point value satisfies the nonincreasing 
monotonicity. Finally, we show the asymptotic stability and H∞-norm bound-
edness of the closed-loop system controlled by the proposed RHHC. Through 
a numerical example, we show that the proposed RHHC is stabilizing and sat-
isfies the infinite horizon H∞-norm bound. 

KeyWords: Receding horizon H∞ control (RHHC), terminal weighting ma-
trix, nonincreasing monotonicity, H∞-norm bound, saddle point 
value. 

I. INTRODUCTION 

Receding horizon controls (RHC) have attracted much 
attention from academia and industry because of its ability 
to handle input constraint, disturbance, time-varying track-
ing commands, and nonlinear systems [1-3]. Most research 
results established on the RHC up to now are concentrate-
don ordinary systems without delays. Receding horizon 
approaches for systems with a state-delay can be found 
only recently [4,5]. A simple control method based on the 
receding horizon concept is proposed for state-delayed 
systems in [4]. However, it does not have a state weighting 
in the cost function unlike the normal RHC. Furthermore, 
the stability can be checked only after the RHC solution is 
obtained.  General  extension  of   the  RHC  to  state-delayed  

systems appears in [5]. RHC proposed there has state 
weighting in the cost function. Furthermore, it has the 
guaranteed closed-loop stability if the optimal cost satisfies 
nonincreasing monotonicity.  

The RHC for ordinary systems has been extended to 
H∞ problems in order to combine the practical advantage of 
the RHC with the robustness of the H∞ control [6-8]. The 
saddle point value in H∞ problems corresponds to the opti-
mal cost in LQ problems. Those results in [6-8] propose 
conditions for nonincreasing monotonicity of the saddle 
point value. Extension to linear time-varying (LTV) sys-
tems were presented in [9,10]. For state-delayed systems, 
there have been many approaches for H∞ problems [11-13]. 
Among them, the results in [12] consider a finite horizon 
H∞ control problems. However, since it deals with finite 
horizon problem, the closed-loop stability issue was not 
considered.  

To the best of our knowledge, there exists no theory 
developed for receding horizon H∞ control (RHHC) for 
state-delayed systems. The purpose of this paper is to lay 
the cornerstone of the theory on RHHC for state-delayed 
systems. The issues such as solution, stability, existence 
condition, norm boundedness will be addressed in the main 
results. However, we do not argue that the proposed control 
method has any advantage over exiting H∞ control method 
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in terms of performance index.  
The rest of this paper is structured as follows: In Sec-

tion 2, we obtain a solution to a receding horizon H∞ con-
trol problem. In Section 3, we derive an LMI condition, 
under which nonincreasing monotonicity condition of a 
saddle point value holds. In Section 4, we show that the 
proposed RHHC has asymptotic stability and satisfies 
H∞-norm boundedness. In Section 5, we provide a numeri-
cal example to illustrate that the proposed RHHC is stabi-
lizing as well as guarantees the H∞-norm bound. Finally, 
we make conclusions in Section 6.  

Throughout the paper, the notation P > 0 (P ≥ 0) im-
plies that the matrix P is symmetric and positive definite 
(positive semi-definite). Similarly, P < 0 (P ≤ 0) implies 
that the matrix P is symmetric and negative definite (nega-
tive semi-definite). ‘ ’ is used to denote elements under 
the main diagonal of a symmetric matrix. L2[0, ∞) and   
L2[t0, tf] denotes the space of square integrable functions on 
[0, ∞) and [t0, tf], respectively. 

II. RECEDING HORIZON H∞ CONTROL 

Consider a linear time-invariant system with a state- 
delay  

1( ) ( ) ( ) ( ) ( )wx t A x t A x t h B u t B w t= + − + +  (1) 

( ) ( ) ( )z t C x t D u t= +  (2) 

where x ∈ Rn is the state, u ∈ Rm is the control input, w ∈ 
Rl is the disturbance signal which belongs to L2[0, ∞), z ∈ 
Rp is the controlled output, h > 0 is the constant delay, re-
spectively. It is assumed that CTD = 0 and DTD = I. In order 
to obtain RHHC, we will first consider the finite-horizon 
cost function as follows:  

0 0( )t fJ x t t u w, , , ,   
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where Q = CTC > 0, F1 > 0, F2 > 0. We can regard J as a 
function of either L2 signals or feedback strategies. Let M = 
{µ: [t0, tf] × Cn[−h, 0] →Rm} and N = {ν: [t0, tf] × Cn[−h, 0]
→Rl}, where Cn[−h, 0] is the space of n-dimensional vec-
tor functions continuous on [−h, 0]. Spaces M and N are 
strategy spaces, and we will write strategies as µ, ν to dis-
tinguish them from signals u, w. Denote xt = x(t + θ), h ∈ 
[−h, 0]. Therefore xt ∈ Cn[−h, 0] by the definition of  
Cn[−h, 0].  

Let’s formulate a dynamic game problem  

0 0min max ( )t fJ x t t
µ∈ ν∈

, , ,µ,ν ,
M N

 (3) 

which is a zero sum game, where u is the minimizing 
player and w is the maximizing player. The optimal u and 
the worst case w are called saddle point strategies. A saddle 
point solution u(τ) = u*(τ, x(τ)), w(τ) = ν*(τ, x(τ)) satisfies  
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The value J(xt0, t0, tf, µ*, ν*) is called the saddle point value. 
For simple notation, the saddle point value will be denoted 
by J*(xt0, t0, tf) throughout this paper, i.e.,  

0 00 0( ) ( )t f t fJ x t t J x t t∗ ∗ ∗, , , , , µ , ν .  

The purpose of this paper is to develop a method to design 
a control law, uR, based on the receding horizon concept 
such that  
(a) in case of zero disturbance, the closed-loop system is 

asymptotically stable  
(b) with zero initial condition, the closed-loop transfer 

function from w to z, i.e., Tzw, satisfies the H∞-norm 
bound, for given γ > 0, 
|| ||zwT ∞ ≤ γ .   (4) 

Since the control is based on the receding horizon strategy 
and the closed-loop system satisfies the H∞-norm bound, 
we will call it receding horizon H∞ control (RHHC).  

Remark 2.1. It is noted that the terminal weighting func-
tion consists of two terms, parameterized by two matrices 
F1 and F2. We will call them terminal weighting matrices in 
this paper. The purpose of adding a second terminal 
weighting term, parameterized by F2, is to take the delay 
effect into account such that the resulting RHHC is stabi-
lizing. More specifically, if F2 is chosen properly, the sad-
dle point value satisfy the well-known ‘nonincreasing 
monotonicity property’, which will be considered in Sec-
tion 3. 

Before moving on, we introduce a lemma, which   
establishes a sufficient condition for a control u and a dis-
turbance w to be saddle point strategies. In the lemma,   
V(τ, xτ) : [t0, tf] × Cn[−h, 0] →R denotes a continuous and 
differentiable functional. Furthermore, we will use the no-
tation  

( )
( ) 0

( ) ( )( ) limx
x

d V x V xV x
d µ τ, τ

ν τ, τ

µ,ν
τ+∆τ τ

τ
∆τ→

⎡ ⎤τ + ∆τ, − τ,
τ, | ⎢ ⎥τ ∆τ⎣ ⎦

 

where ( ) [ 0]x x s s hµ,ν
τ+∆τ = τ + ∆τ + , ∈ − ,  is the solution of 

the system (1) resulting from the control u(t) = µ(t, xτ) and 
disturbance w(t) = ν(t, xτ). 

Lemma 2.1. Assume that there exists a continuous func-
tional V(τ, xτ) : [t0, tf] × Cn[−h, 0] →R, and a vector func-
tional µ*(τ, xτ) : [t0, tf] × Cn[−h, 0] →Rm and ν*(τ, xτ) : [t0, tf] 
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× Cn[−h, 0] →Rl such that  
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for all τ ∈ [t0, tf] and all xt ∈ Cn[−h, 0]. Then, V(s, xs) =  
J(xs, s, tf, µ*, ν*) and  

( ) ( )

                         ( )
s f s f

s f
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J x s t
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∗

, , ,µ ,ν ≤ , , ,µ ,ν

≤ , , ,µ,ν
 

(5)
 

for all s ∈ [t0, tf]. That is, u(τ) = µ*(τ, xτ) and w(τ) = ν*(τ, xτ) 
are saddle point solutions and V(τ, xτ) is a saddle point 
value.  

Proof. Integrating (b) from s to tf yields  
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Substituting V(tf, xtf
) in (a) into the above equation yields  
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From the inequality relation in (c), we obtain  

( )
( )

( ) ( )  ( ) ( ) ( )T T

x
x
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d τ
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2    ( ) ( ) 0 T x x∗ ∗
τ τ− γ ν τ, ν τ, ≥ .  

Integrate the above inequality from s to tf. After some ma-
nipulation, we lead to  

0

 
 ( ) [ ( )  ( ) ( ) ( )ft T T

s tV s x x Q x x xτ τ, ≤ τ τ + µ τ, µ τ,∫  

   2  ( ) ( )] T x x d∗ ∗
τ τ− γ ν τ, ν τ, τ  
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( ) .s fJ x s t ∗= , , ,µ,ν  

Similarly, we have  

( ) ( )s s fV s x J x s t ∗, ≥ , , ,µ ,ν .  

This completes the proof. ■ 

From the above lemma, we see that V(τ, xτ) is a saddle 
point value, that is, V(τ, xτ) = J 

*(xs, τ, tf). Furthermore, it is 
noted that V(s, xs) ≥ 0 for all s ∈ [t0, tf]. This can be verified 
as follows:  

From (5), it follows  

( ) ( ) ( 0)s s f s fV s x J x s t J x s t∗ ∗ ∗, = , , ,µ ,ν ≥ , , ,µ ,  

where  

( 0)s fJ x s t ∗, , ,µ ,  
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Since F1 > 0 and F2 > 0, we lead to J(xs, s, tf, µ*, 0) ≥ 0. 
Consequently, V(s, xs) ≥ 0 for all s ∈ [t0, tf].  

Before deriving the receding horizon H∞ control, we 
first provide the solution to the finite horizon dynamic 
game problem in (3). The derivation is based on Lemma 
2.1. The procedure taken for derivation of the solution is 
similar to that used in [5]. We assume the saddle point 
value has the form  

 0
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Using the above saddle point value, the saddle point strate-
gies for the dynamic game problem in (3) are given by  
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P1, P2, and P3 satisfy the following Riccati-type coupled 
partial differential equations:  

2
1 1 1 11( ) ( ) ( ) ( )( ) ( )T T T

w wA P P A P BB B B PP −τ + τ + τ − τ − γ τ  

2 2( 0) ( 0) 0TQ P P+ + τ, + τ, =  (6) 

2 2 3( ) ( ) ( 0 )TP s A P s P s
s

∂ ∂⎛ ⎞− τ, + τ, + τ, ,⎜ ⎟∂τ ∂⎝ ⎠
 

2
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2
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with boundary conditions  

2 1 1( ) ( )P h P Aτ,− = τ  (9) 

3 1 2( ) ( )TP h s A P sτ, − , = τ, ,  (10) 

where t0 ≤ τ < tf  − h, −h ≤ r ≤ 0 and −h ≤ s ≤ 0. Similarly, 
W1, W2, and W3 satisfy the following Riccati-type partial 
differential equations: 
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with boundary condition  

2 1 1( ) ( )W h W Aτ, − = τ  

3 21( ) ( )TW h s A W sτ,− , = τ, ,  

where tf  −h ≤ τ < tf , −h ≤ r ≤ 0 and −h ≤ s ≤ 0. In addition, 
P1, P2, P3 and W1, W2, W3 satisfy the following boundary 
conditions:  

1 1( )fW t F=  (11) 

1 1( ) ( )f fP t h W t h− = −  (12) 

2 2( ) ( )f fP t h s W t h s− , = − ,  (13) 

3 3( ) ( )f fP t h r s W t h r s− , , = − , , .  (14) 

P1, P2, P3, and W1, W2, W3 are solved backward in time 
from tf to t0. Because the system is time-invariant, the shape 
of P1, P2, P3, and W1, W2, W3 are only characterized by the 
difference between the initial time and the final time, that is, 
tf − t0. If tf − t0 varies, the values of P1, P2, P3, and W1, W2, 
W3 at the initial time, t0, also vary. However, if tf − t0 is 
fixed to a constant value, the values are all the same at the 
initial time. For example, P1(t0) with t0 = 1 and tf = 5 is 
equal to P1(t0) with t0 = 2 and tf = 6. If we take receding 
horizon strategy, t0 and tf corresponds to t and t + Tp, re-
spectively, where t denotes the current time. The difference 
between the initial time and the terminal time is always 
constant to be Tp. Therefore, P1(t0) reduces to a constant 
matrix regardless of the value of t0. Let’s introduce new 
notations as follows: 

1 0 2 01 2

1 0 2 01 2

( ) ( ) ( )

( ) ( ) ( )

P t s P t sP P

W t s W t sW W

, , ,

, , .
 

Finally, the receding horizon H∞ control is represented as a 
distributed state feedback strategy as follows:  
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∫

∫
 

  (15) 

It is noted that the feedback strategy needs only the state 
trajectories for time interval [t − h, t] and is invariant with 
time.  

Remark 2.2. In order to solve Riccati-type coupled partial 
differential equations given above, we utilize a numerical 
algorithm presented in [14]. The main idea of the method 
in [14] is that the original coupled partial differential equa-
tions can be transformed into coupled ordinary differential 
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equations by appropriate change of variables. The coupled 
differential equations are solved simultaneously backward 
in time. The well-known fourth-order Runge-Kutta method 
can be used to solve the differential equations for the time 
interval [tf − h, tf]. However, Euler’s method is used for the 
time interval [tf , tf −h). Therefore the solution correspond-
ing to the time interval [tf , tf − h) is liable to bigger nu-
merical error. By decreasing the numerical integration step 
size, more accurate numerical solution is obtained. How-
ever, this causes more computational effort. That is, there 
exists a trade-off between the accuracy of the numerical 
solution and the required computational effort.  

We have constructed RHHC from the solution to a fi-
nite horizon dynamic game problem. However, the only 
thing we can say about the control is that it is obtained 
based on the receding horizon strategy. Nothing can be said 
about the asymptotic stability and H∞-norm boundedness 
yet. We therefore will investigate those issues in the next 
two sections. 

III. NONINCREASING MONOTONICITY 
OF A SADDLE POINT VALUE 

Nonincreasing monotonicity of the saddle point value 
plays an important role in proving the closed-loop stability 
and H∞-norm bound for delay-free systems. As will be 
shown later, this is also the case with time-delay systems. 
In what follows, we will show how to choose terminal 
weighting matrices such that the saddle point value satisfies 
the nonincreasing monotonicity.  

Theorem 3.1.  Given γ > 0, assume that there exist X > 0, 
S, Y, and Y1 such that  
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If we choose terminal weighting matrices F1 and F2 
such that F1 = X 

−1 and F2 = S 
−1, the saddle point value 
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tonicity property:  
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∂σ

= τ τ + µ τ µ τ
∆

− γ ν τ ν τ τ

+ σ + ∆ σ + ∆

+ τ τ τ

− τ τ + µ τ µ τ

− γ ν τ ν τ τ

+ σ σ −

∫

∫

∫

}2 ˆ( ) ( )h F x dσ

σ−
τ τ τ∫

 

where the pair ( )µ, ν  is a saddle point solution for J(xt0, t0, 
σ + ∆, u, w) and the pair ˆˆ( )µ,ν  is a saddle point solution 
for J(xt0, t0, σ, u, w). x  denotes the state trajectory result-
ing from the strategies µ  and ν  and x̂  denotes the 

state trajectory resulting from the strategies µ̂  and ν̂ . 

Replace the strategy µ  and ν̂  by µ̂  and ν  up to σ 

and use u(τ) = K x(τ) + K1 x(τ − h) and ˆ( ) ( )w xττ = ν τ,  
for τ ≥ σ. It is noted that, since we have changed strategies, 
the resulting state trajectory is neither x  nor x̂ . Let’s 
denote the resulting state trajectory by x. Then we obtain  

0

*
0( , , )tJ x t∂ σ

∂σ
 

{

}

0

1 1
2

1

2

1 2

1 1
2

1lim [ ( ) ( )

[ ( ) ( )] [ ( ) ( )]

( ) ( )]

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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K x K x h K x K x h

w w d

x F x

x F x d

x F x x F x d

x Q x

K x K x h K x K x h

w w

σ+∆

σ∆→

σ+∆

σ+∆−

σ

σ−

≤ τ τ
∆

+ τ + τ − τ + τ −

− γ τ τ τ

+ σ + ∆ σ + ∆

+ τ τ τ

− σ σ − τ τ τ

= σ σ

+ σ + σ − σ + σ −

− γ τ τ

∫

∫

∫

{ }1 2

1 1
2

1
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)
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[ ( ) ( )] [ ( ) ( )]

( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

T T
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T

T
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σ
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+ σ σ + τ τ τ

σ
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After substituting 1 1( ) ( ) ( ) ( )x A BK x A BKσ = + σ + +  

( ) ( )wx h B w⋅ σ − + σ  into the above, we obtain  

0

*
0

11 1 1 1 1 1

2 1 1
2

( , , )

( ) ( ) ( )
( ) 0 ( )

( ) ( )

t

T T
w

T

J x t

x F A BK K K F B x
x h F K K x h

w I w
Λ

∂ σ
≤

∂σ
⎡ ⎤σ Λ + + σ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥σ − − + σ −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥σ −γ σ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

where  

11 1 1 2( ) ( )T TA BK F F A BK Q K K FΛ = + + + + + + .  

It is apparent that, if Λ ≤ 0, nonincreasing monotonicity in 
(17) holds. Λ ≤ 0 can be rewritten as follows:  

1 1 1 1

2

1 1/ 21/ 2

11
1

2

( ) ( ) ( )

00 0 0
0 .0 0

00 0 0

T

T

A BK F F A BK F A BK
F

QQ I
K KK K I
II F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

+ + + +
−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ ≤⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

Pre- and post-multiply the above matrix inequality by 
1 1

1 2{ }diag F F− −, . The above inequality is then equivalently 
changed into (16) according to the Schur complement. This 
completes the proof. ■ 

The nonincreasing monotonicity of the saddle point 
value implies that the saddle point value does not increase 
even though we increase the horizon length. As will be 
shown in the next section, this property plays an important 
role in RHHC’s achieving closed-loop stability and H∞- 
norm boundedness. 

IV. ASYMPTOTIC STABILITY AND 
H∞-NORM BOUNDEDNESS 

In this section, we show that the proposed receding 
horizon control achieves the closed-loop asymptotic stabil-
ity for zero disturbance and satisfies the H∞-norm bound-
edness for zero initial condition.  

Theorem 4.1.  Given Q > 0 and γ > 0, if 00( ) 0tJ x t∗ , ,σ
∂σ ≤  

for σ > t0, the system (1) controlled by the RHHC in (15) is 
asymptotically stable for zero disturbance and satisfies 
infinite horizon H∞-norm bound for zero initial condition.  

Proof. For any θ > 0, the saddle point value V 
* satisfies  

*

* *

2 * *

*

( , , )

[ ( ) ( ) ( , ) ( , )

( , ) ( , )]

( , , ) ,

t p

t T T
t

T

t p

J x t t T

x t Q x t x x

x x d

J x t t T

+θ
τ τ

τ τ

+θ

+

= + µ τ µ τ

− γ ν τ ν τ τ

+ + θ +

∫

 

where the pair (µ*, ν*) is a saddle point solution for J(xt, t,  
t + Tp). Replace the saddle point strategy ν*(τ, xτ) by ν(τ, xτ) 
given by  

( ) ,
( )

( ) , p

w t t
x

x t t Tτ ∗
τ

τ ≤ τ < + θ⎧
ν τ, = ⎨ν τ, + θ ≤ τ ≤ +⎩

 

where w(τ) denotes an arbitrary signal. Recalling J 
*(xt, t,   

t + Tp, u, w) = J(xt, t, t + Tp, µ*, ν*), we obtain  

* *

2

* *

( , , ) ( , , , , )

[ ( ) ( ) ( , ) ( , )

( ) ( )]

( , , , , )

t p t p

t T T
t

T

t p

J x t t T J x t t T

x Q x x x

w w d

J x t t T

+θ
τ τ

+θ

+ ≥ + µ ν

= τ τ + µ τ µ τ

− γ τ τ τ

+ + θ + µ ν

∫  

where x  denotes the state trajectory resulting from the 
strategy µ* and ν. It is noted that the strategy pair (µ*, ν*) is 
the saddle point solution not only for J(xt, t, t + Tp, u, w) but 
also for J(xt+θ, t + θ, t + Tp, u, w) because the terminal time 
is t + Tp  for both cases. Therefore 

( ) ( )t tp pJ t t T J t t Tx x∗ ∗ ∗
+θ +θ, + θ, + , µ ,ν = , + θ, + . Fur-

thermore, from the fact that 00( ) 0tJ x t∗ , ,σ
∂σ ≤  for σ > t0, it 

follows ( ) ( )t tp pJ t t T J t t Tx x∗ ∗
+θ +θ, + θ, + ≥ , + θ, + + θ . 

This, in turn, leads to  

(  )t pJ x t t T∗ , , +  

2

[ ( ) ( ) ( ) ( )

( ) ( )] (   ) .

t TT
t

T
t p

Q xx x x

w w d J t t Tx

+θ ∗ ∗
τ τ

∗
+θ

≥ τ τ + µ τ, µ τ,

−γ τ τ τ + , + θ, + + θ

∫
 

Therefore we obtain  

2

( ) ( )

1 ( ) ( ) ( ) ( )

               ( ) ( )  

t p t p

t TT
t

T

J t t T J x t t Tx

Q xx x x

w w d

∗ ∗
+θ

+θ ∗ ∗

, + θ, + + θ − , , +
θ

⎡≤ − τ τ + µ τ, µ τ,τ τ⎣θ
⎤− γ τ τ τ⎦

∫  

When θ → 0, we have  

( )t pdJ x t t T
dt

∗ , , +
 

2[ ( ) ( ) ( ) ( ) ( ) ( )]T T T
R t R tx t Q x t u x u x w t w t≤ − + − γ  (18) 
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21 1 1

1

( ) ( )
T

T T
T

Q BB BP P P w t w t
B IP

⎡ ⎤+
= − ψ ψ − γ⎢ ⎥

⎣ ⎦
 (19) 

where  

0
2

( )
.

( ) ( )T
h

x t

B s x t s dsP−

⎡ ⎤
⎢ ⎥ψ =

+⎢ ⎥⎣ ⎦∫
 

In case of w(t) = 0, we know that  

1 1 1

1

( ) T
p T

T

dJ t t t T Q BB BP P P
dt B IP

∗ , , + ⎡ ⎤+
≤ −ψ ψ⎢ ⎥

⎣ ⎦
 

( ) ( )Tx t Q x t≤ −  

2( ) || ( ) ||min Q x t≤ −λ . 

We can conclude that J 
*(xt, t, t + Tp) is a Lyapunov- 

Krasovskii functional from the above derivation. Therefore, 
the closed-loop system is asymptotically stable. We then 
prove that H∞-norm bound is guaranteed for the closed- 
loop system. Consider an infinite horizon cost Jw given by  

2
0 [ ( ) ( ) ( ) ( ) ( ) ( )] .T T T

w R t R tJ x t Q x t u x u x w t w t dt∞= + − γ∫  

We have only to show that Jw ≤ 0 for the proof of 
H∞-norm bound.  

0

2

0

[ ( ) ( ) ( ) ( )

( ) ( ) ( )]

( 0 ) ( )

T T
w R t R t

T
t p

p t p t

J x t Q x t u x u x

dw t w t J x t t T dt
dt

J x T J x t t T

∞

∗

∗ ∗
=∞

= +

− γ + , , +

+ , , − , , + |

∫

 

For zero initial condition, i.e. x(s) = 0, s ∈ [−h, 0], J 
*(x0, 0, 

Tp) is equal to zero. Furthermore, since the saddle point 
value is nonnegative-definite, we have J 

*(xt, t, t + Tp) |t = ∞ ≥ 
0. This, in turn, leads to  

0

2

[ ( ) ( ) ( ) ( )

( ) ( ) ( )]

T T
w R t R t

T
t p

J x t Q x t u x u x

dw t w t J x t t T dt
dt

∞

∗

≤ +

− γ + , , +

∫
 

The integrand above is less than or equal to zero from (18). 
Consequently we can conclude that Jw ≤ 0. This completes 
the proof. ■ 

Theorem 4.1 states that the nonincreasing monotonic-
ity of the saddle point value is the sufficient condition for 
the closed-loop stability and the H∞-norm boundedness. An 
LMI condition on the terminal weighting matrices under 
which the saddle point satisfies nonincreasing monotonicity 
was given in Theorem 3.1. Therefore, we lead to the fol-
lowing corollary:  

Corollary 4.1. Given Q > 0 and γ > 0, if the LMI (16) is 
feasible and we can obtain two terminal weighting matrices 
F1 and F2, the system (1) controlled by the proposed RHHC 
in (15) is asymptotically stable for zero disturbance and 
satisfies infinite horizon H∞ norm bound for zero initial 
condition. 

V. NUMERICAL EXAMPLE 

In this section, we provide a numerical example in or-
der to illustrate the properties of the proposed RHHC. We 
use a computer with Pantium 4 CPU (2.8GHz, 496MByte 
RAM) for computation and simulation. Consider a chemi-
cal reactor system taken from [15]. The system matrices are 
given by  

4 93 1 01 0 0
3 20 5 30 12 8 0
6 40 0 347 32 5 1 04
0 0 833 11 0 3 96

A

− . − .⎡ ⎤
⎢ ⎥− . − . − .⎢ ⎥=
⎢ ⎥− . . − . − .
⎢ ⎥

. . − .⎣ ⎦

 

1

1 92 0 0 0
0 1 92 0 0
0 0 1 87 0
0 0 0 0 724

A

.⎡ ⎤
⎢ ⎥.⎢ ⎥=
⎢ ⎥.
⎢ ⎥

.⎣ ⎦

 

1 0 1
0 1 0
0 0 1
0 0 0

wB B

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= , =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

and the delay length is h = 1. We chose Q = I and γ = 0.85. 
We obtained terminal weighting matrices F1 and F2 by 
solving an LMI (16) and using the relation F1 = X −1,  F2 = 
S 

−1 as follows:  

1

2

1 8193 0 6531 0 2726 0 0417
0 3979 0 1397 0 0605

0 1042 0 0467
0 2169

3 2895 1 3429 0 5725 0 0081
0 6921 0 2584 0 0258

0 1380 0 0301
0 0466

F

F

. − . . − .⎡ ⎤
⎢ ⎥. − . .⎢ ⎥=
⎢ ⎥. .
⎢ ⎥

.⎣ ⎦

. − . . .⎡ ⎤
⎢ ⎥. − . .⎢ ⎥=
⎢ ⎥. .
⎢ ⎥

.⎣ ⎦

 

Y and Y1 are obtained as follows:  

1 0239 0 0628 0 2685 0 0725
0 0091 0 9677 0 1219 0 0353

Y
− . . . − .⎡ ⎤

= ⎢ ⎥− . − . . − .⎣ ⎦
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1
0 0023 0 0049 0 0031 0 0037
0 0008 0 0000 0 0055 0 0028

Y
. . − . − .⎡ ⎤

= ⎢ ⎥. . − . .⎣ ⎦
 

For the prediction horizon length Tp = 1.5, we ob-
tained 1P  and 2( )sP  in (15) from the solution to Riccati- 
type partial differential equations given in Section 2. 1P  
is given below and the trajectory of (1, 1) element of 

2 ( )P s  is shown for −h ≤ s ≤ 0 in Fig. 1. The remaining 
trajectories of 2 ( )P s  are omitted due to the space limita-
tion.  

1

0 6737 0 2608 0 1159 0 0007
0 1860 0 0643 0 0200

0 0517 0 0283
0 1213

P

. − . . .⎡ ⎤
⎢ ⎥. − . .⎢ ⎥=
⎢ ⎥. .
⎢ ⎥

.⎣ ⎦

 

Numerical integration step size was taken to be 0.02 
seconds. The total time taken to solve the partial differen-
tial equations turned out to be 38.34 seconds. This denotes 
that relatively big computation is required to obtain the 
final control law given in (15). 
 

 

Fig. 1. The trajectory of (1, 1) element of P2(s) for −h ≤ s ≤ 0. 

In order to illustrate the stability and the H∞-norm 
boundedness, we applied the disturbance input w(t) that has 
the shape in Figs. 2 and 3 shows the state response of the 
closed-loop system to the disturbance in Fig. 2. It clearly 
shows that the resulting closed-loop system is stable. The 
value of ||z||2 / ||w||2 was computed to be 0.5384, which is 
less than γ = 0.85. This supports that the closed-loop sys-
tem satisfies H∞-norm boundedness. It is noted that the 
total time taken to do 15-second-long simulation is about 
0.8 seconds. Therefore, the proposed controller can be im-
plemented real-time if high speed processors, such as DSP, 
are used.  

 
Fig. 2. Disturbance, w(t). 

 
Fig. 3. State response to the disturbance input. 

VI. CONCLUSION 

In this paper, we proposed the receding horizon H∞ 
control (RHHC) for linear systems with a state-delay. 
Firstly, we proposed a new cost function for a dynamic 
game problem. The terminal weighting term is parameter-
ized by two terminal weighting matrices. Secondly, we 
derived a saddle point solution to a finite horizon dynamic 
game problem. Thirdly, the receding horizon H∞ control 
was constructed from the obtained saddle point solution. 
We showed that, under the nonincreasing monotonicity 
condition of a saddle point value, the proposed receding 
horizon H∞ control is stabilizing and satisfies the H∞-norm 
bound. We proposed an LMI condition on the terminal 
weighting matrices, under which the saddle point value 
satisfies the nonincreasinn monotonicity. Main contribution 
of this work is that it extended the receding horizon H∞ 
control for delay-free systems to that for time-delay sys-
tems for the first time. 
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