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Abstract

A robust H∞ control for uncertain linear systems with a state-delay is described. Systems with norm-bounded parameter uncertainties
are considered and linear memoryless state feedback controllers are obtained. Firstly, a delay-dependent bounded real lemma for systems
with a state-delay is presented in terms of linear matrix inequalities (LMIs). By taking a new Lyapunov–Krasovsii functional, neither
model transformation nor bounding for cross terms is required to obtain delay-dependent results. Secondly, based on the bounded real
lemma obtained, delay-dependent condition for the existence of robust H∞ control is presented in terms of nonlinear matrix inequalities.
In order to solve these nonlinear matrix inequalities, an iterative algorithm involving convex optimization is proposed. Numerical examples
show that the proposed methods are much less conservative than existing results.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There have been considerable research e?orts on robust
H∞ control for uncertain time-delay systems, in particular,
with parameter uncertainties. The existing results for H∞
control of time-delay systems deal with either one of two
types of stabilization: delay-independent stabilization (Choi
& Chung, 1997; Kapila & Haddad, 1998; Zribi &Mahmoud,
1999; Kim & Park, 1999) and delay-dependent stabilization
(de Souza & Li, 1999; Fridman & Shaked, 2001; Lee, Moon,
& Kwon, 2001; Fridman & Shaked, 2002). Recent research
e?ort is focused more on delay-dependent stabilization. The
main objective of the delay-dependent H∞ control is to ob-
tain a controller that allows a maximum delay size for a
Fxed H∞ performance bound or achieves a minimum H∞
performance bound for a Fxed delay size. The conservatism
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in the delay-dependent H∞ control is hence measured by
the allowable delay size or performance bound obtained.
In the past few years, there have been various approaches

to reduce the conservatism of delay-dependent conditions
by using new bounding for cross terms or choosing new
Lyapunov–Krasovskii functional. The delay-dependent sta-
bility criterion of Park, Moon, and Kwon (1998) and Park
(1999) is based on a so-called Park’s inequality for bound-
ing cross terms. This stability criterion was later extended to
controller synthesis (Moon, 1998). However, major draw-
back in using the bounding of Park et al. (1998) and Park
(1999) is that some matrix variables should be limited to
a certain structure to obtain controller synthesis conditions
in terms of LMIs. This limitation introduces some con-
servatism. In Moon, Park, Kwon, and Lee (2001) a new
inequality, which is more general than the Park’s inequality,
was introduced for bounding cross terms and controller
synthesis conditions were presented in terms of nonlinear
matrix inequalities in order to reduce the conservatism. An
iterative algorithm was developed to solve the nonlinear ma-
trix inequalities (Moon et al., 2001). Stabilization method
of Moon et al. (2001) was later extended to H∞ control
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in Lee et al. (2001). Recently, it was shown that conser-
vatism can be further reduced by taking a new Lyapunov–
Krasovskii functional (Fridman & Shaked, 2002). The
results use the inequalities of Park (1999) for bounding
cross terms. However, conservatism still remains because
some of matrix variables have limited structure to obtain
controller synthesis condition in terms of LMIs.
This paper is based on a new Lyapunov–Krasovskii

functional. It is well-known that existing delay-dependent
methods commonly require some kind of model transfor-
mation and bounding for cross terms. However, in the
present paper, those are unnecessary thanks to a newly
chosen Lyapunov–Krasovskii functional. A less conserva-
tive delay-dependent robust H∞ control is proposed for
uncertain linear systems with a state-delay and parameter
uncertainties based on the new Lyapunov–Krasovskii func-
tional. We focus on memoryless state-feedback control. As
an initial step, a new delay-dependent bounded real lemma
for systems with a state-delay is derived in terms of LMIs.
Based on the bounded real lemma obtained, a condition
for the existence of a robust H∞ control is given in terms
of nonlinear matrix inequalities. The reason for presenting
controller synthesis condition in terms of nonlinear matrix
inequalities is because much conservatism can be reduced
by doing so. Because these nonlinear matrix inequalities
lead to a nonconvex feasibility problem, an iterative al-
gorithm involving convex optimization, which is similar
to the one in Moon et al. (2001), is given to solve the
problem.

2. Problem statement and preliminaries

Consider the following uncertain systems with a single
state-delay:

ẋ(t) = [A+ F�(t)E] x(t) + [A1 + F�(t)E1] x(t − h)

+ [B+ F�(t)Eb]u(t) + Bww(t); (1)

z(t) =



Cx(t) + Dww(t)

C1x(t − h)

Du(t)


 ;

x(t) = 0; t ∈ [− Qh; 0];

where x(t)∈Rn is the state, u(t)∈Rm is the control input,
w(t)∈Rp is the disturbance input that belongs to L2[0;∞),
z(t)∈Rq is the controlled output, h¿ 0 is an unknown but
constant delay, and Qh is a constant satisfying h6 Qh. A, A1,
B, Bw, C, C1, D, Dw, F , E, E1, and Eb are known real con-
stant matrices of appropriate dimensions and �(t) denotes
time-varying parameter uncertainties. �(t) is assumed to be
of diagonal form

�(t) = diag{�1(t); : : : ; �r(t)};

where �i(t)∈Rpi×qi ; i = 1; : : : ; r, are unknown real
time-varying matrices satisfying

�T
i (t)�i(t)6 I ∀t¿ 0:

Throughout the paper, I denotes an identity matrix of ap-
propriate dimension.
We are interested in designing amemoryless state-feedback

controller

u(t) = Kx(t); (2)

where K ∈Rm×n is a constant matrix. The aim of this paper
is to develop a delay-dependent robustH∞ control such that,
for all admissible uncertainties and any constant time-delay
h satisfying 06 h6 Qh,

(1) the closed-loop system is stable;
(2) the closed-loop system guarantees, under zero initial

condition,

‖z(t)‖2¡�‖w(t)‖2
for all nonzero w∈L2[0;∞) and some prescribed con-
stant �¿ 0.

The following lemma is introduced in order to handle the
parameter uncertainties:

Lemma 2.1. Let F , E, and � be real matrices of
appropriate dimensions with � = diag{�1; : : : ; �r},
�T
i �i6 I , i = 1; : : : ; r. Then, for any real matrix

�= diag{�1I; : : : ; �rI}¿ 0, the following inequality holds:

FRE + ET�TFT6F�FT + ET�−1E: (3)

Proof. The basic idea for the proof is to use the fact

(�
1
2FT − �− 1

2RE)T(�
1
2FT − �− 1

2RE)¿ 0.

Remark 2.1. In (1), the same matrix �(t) appears in the
perturbation of all the system matrices. Some papers use
independent perturbations on e.g. A and A1 as follows (de
Souza & Li, 1999; Moon et al., 2001):

ẋ(t) = [A+ QF Q�(t) QE]x(t) + [A1 + QF1 Q�1(t) QE1] x(t − h)

+ [B+ QF Q�(t) QEb]u(t): (4)

Let us take

F = [ QF QF1]; �(t) =

[ Q�(t) 0

0 Q�1(t)

]
;

E =

[
QE

0

]
; E1 =

[
0

QE1

]
; Eb =

[
QEb

0

]
:

This shows that, with an appropriate structure of E, E1, Eb,
and �, (1) can always deal with independent perturbations
in (4).
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3. Delay-dependent bounded real lemma

Let us consider nominal systems with a state-delay

ẋ(t) = Ax(t) + A1x(t − h) + Bww(t);

z(t) =

[
Cx(t) + Dww(t)

C1x(t − h)

]
;

x(t) = 0; t ∈ [− Qh; 0]: (5)

For some prescribed value �¿ 0, we denote the H∞ norm
boundedness of the transfer function from w to z, Tzw, by
‖Tzw‖∞¡�. However, throughout this paper, we prefer the
notation ‖z(t)‖2¡�‖w(t)‖2; ∀w(t)∈L2[0;∞) because the
H∞ norm is equal to the induced 2-norm in the time do-
main. For delay-free systems, the condition for ‖Tzw‖∞¡�
is stated in the well-known bounded real lemma (BRL),
which is a necessary and suScient condition. In the fol-
lowing theorem, we present a new bounded real lemma for
systems with a state-delay. However, unlike the BRL for
delay-free systems, the proposed BRL gives only a suScient
condition.

Theorem 3.1. For some prescribed �¿ 0 and Qh¿ 0, as-
sume that there exist P1¿ 0, P2, P3, Q, X11, X12, X22, Y1,
Y2, and Z ¿ 0 such that


&11 &12 PT
2A1 − Y1 PT

2Bw CT 0

? &22 PT
3A1 − Y2 PT

3Bw 0 0

? ? −Q 0 0 CT
1

? ? ? −�2I DT
w 0

? ? ? ? −I 0

? ? ? ? ? −I



¡ 0;

(6)

X11 X12 Y1

? X22 Y2

? ? Z


¿ 0; (7)

where

&11 , PT
2A+ ATP2 + QhX11 + Q + Y1 + Y T

1 ;

&12 , P1 − PT
2 + ATP3 + QhX12 + Y T

2 ;

&22 , −P3 − PT
3 + QhX22 + QhZ:

Then system (5) is stable and satis;es ‖z‖2¡�‖w‖2 for
all nonzero w∈L2[0;∞) and any constant time-delay h
satisfying 06 h6 Qh.

Proof. Consider the following index:

Jzw =
∫ ∞

0
[zT(t)z(t)− �2wT(t)w(t)] dt:

Let us choose a Lyapunov–Krasovskii functional candidate
V (xt) as follows:

V (xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt); (8)

where

V1(xt),

[
x(t)

ẋ(t)

]T

HP

[
x(t)

ẋ(t)

]
;

V2(xt),
∫ 0

−h

∫ t

t+*
ẋT(+)Zẋ(+) d+ d*;

V3(xt),
∫ t

t−h
xT(+)Qx(+) d+;

V4(xt),
∫ t

0

∫ *

*−h



x(*)

ẋ(*)

ẋ(+)



T 

X11 X12 Y1

? X22 Y2

? ? Z




×



x(*)

ẋ(*)

ẋ(+)


 d+ d*;

P =

[
P1 0

P2 P3

]
; H =

[
I 0

0 0

]
;

and

P1¿ 0; Z ¿ 0; Q¿ 0;



X11 X12 Y1

? X22 Y2

? ? Z


¿ 0:

xt denotes x(t + ,) for −h6 ,6 0. Note that V (xt)¿ 0
unless ‖xt‖c = 0, where

‖xt‖c =max
,

‖x(,)‖2; −h6 ,6 0:

The term V1 has the same form as in Fridman and
Shaked (2001) and Fridman (2001) and is actually

V1 = xT(t)P1x(t):

For the proof of the theorem, it is suScient to show that
Jzw ¡ 0 for any nonzero w and V̇ ¡ 0 for w = 0. Using
the descriptor system approach introduced in Fridman and
Shaked (2002), the time derivative of V1 along the solution
of (5) is given by

V̇ 1 = 2

[
x(t)

ẋ(t)

]T

PT

[
ẋ(t)

0

]

= 2

[
x(t)

ẋ(t)

]T

PT

[
ẋ(t)

−ẋ(t)+Ax(t)+A1x(t−h)+Bww(t)

]
:
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V̇ 4 is represented as follows:

V̇ 4 = h

[
x(t)

ẋ(t)

]T [
X11 X12

? X22

][
x(t)

ẋ(t)

]
+ 2

[
x(t)

ẋ(t)

]T [
Y1

Y2

]

×[x(t)− x(t − h)] +
∫ t

t−h
ẋ(+)Zẋ(+) d+:

We can rewrite Jzw as follows:

Jzw =
∫ ∞

0
[zT(t)z(t)− �2wT(t)w(t) + V̇ (xt)] dt

+V (xt)|t=0 − V (xt)|t=∞:

Because V (xt)|t=0 = 0 under zero initial condition and
V (xt)|t=∞¿ 0, we lead to

Jzw6
∫ ∞

0
[zT(t)z(t)− �2wT(t)w(t) + V̇ (xt)] dt:

Using the relation h6 Qh, the upper bound on Jzw is written
as follows:

Jzw6
∫ ∞

0
[zT(t)z(t)− �2wTw(t) + V̇ (xt)] dt

6
∫ ∞

0




x(t)

ẋ(t)

x(t − h)

w(t)




T

×



.11 .12 .13

? −Q + CT
1C1 0

? ? −�2I + DT
wDw




︸ ︷︷ ︸
/

×




x(t)

ẋ(t)

x(t − h)

w(t)


 dt;

where

.11 =

[
0 I

A −I

]T

P + PT

[
0 I

A −I

]
+ Qh

[
X11 X12

? X22

]

+

[
Q + CTC + Y1 + Y T

1 Y T
2

? QhZ

]

.12 = PT

[
0

A1

]
−
[
Y1

Y2

]
; .13 = PT

[
0

Bw

]
+

[
CTDw

0

]
:

/¡ 0 implies that Jzw ¡ 0. After some manipulation us-
ing Schur complement, the inequality /¡ 0 is equivalently

changed to (6). Consider the following inequality:
&11 &12 PT

2A1 − Y1
? &22 PT

3A1 − Y2
? ? −Q


¡ 0; (9)

which guarantees V̇ ¡ 0 in case of w=0. If the LMI (6) is
feasible, then the LMI (9) is also feasible. Thus, the system
(5) is stable. This completes the proof.

Remark 3.1. The conditions (6) and (7) are LMI condi-
tions. Therefore, for Fxed �, the maximum upper bound
of the allowable delay Qh can be obtained eSciently using
existing convex optimization algorithms. Similarly, for Fxed
Qh, we can Fnd the minimum value of �.

Remark 3.2. Some sort of model transformation and bound-
ing technique for cross terms are commonly used in the
derivation of existing delay-dependent results. It is noted
that those are unnecessary in the proposed approach and
hence the derivation procedure is much simpler.

4. H∞ control for nominal systems

In this section, we develop delay-dependent H∞ control
for nominal systems based on the bounded real lemma de-
rived in the previous section. Consider nominal systems with
a state-delay

ẋ(t) = Ax(t) + A1x(t − h) + Bu(t) + Bww(t);

z(t) =



Cx(t) + Dww(t)

C1x(t − h)

Du(t)


 ;

x(t) = 0; t ∈ [− Qh; 0]: (10)

We present a suScient condition under which there exists
a memoryless state-feedback H∞ controller for nominal
systems (10).

Theorem 4.1. For some prescribed �¿ 0 and Qh¿ 0,
assume that there exist L1¿ 0, L2, L3, W , M11, M12, M22,
N1, N2, R, and V such that


411 412 −N1 0 L1C
T 0 V TDT QhLT

2

? 422 A1L1 − N2 Bw 0 0 0 QhLT
3

? ? −W 0 0 L1C
T
1 0 0

? ? ? −�2I DT
w 0 0 0

? ? ? ? −I 0 0 0

? ? ? ? ? −I 0 0

? ? ? ? ? ? −I 0

? ? ? ? ? ? ? − QhR




¡ 0;
(11)
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M11 M12 N1

? M22 N2

? ? L1R−1L1


¿ 0; (12)

where

411 , L2 + LT2 +W + N1 + NT
1 + QhM11;

412 , (AL1 + BV )T − LT2 + L3 + NT
2 + QhM12;

422 , −L3 − LT3 + QhM22:

Then system (10) controlled by u(t) = VL−1
1 x(t) is stable

and satis;es ‖z‖2¡�‖w‖2 for all nonzero w∈L2 ∈ [0;∞)
and any constant time-delay h satisfying 06 h6 Qh.

Proof. Assuming u(t) = Kx(t), A and Du(t) in (10) are
replaced by (A+BK) and DKx(t), respectively. Taking this
into account, the condition /¡ 0 is replaced by

.̂11 PT

[
0

A1

]
−
[
Y1

Y2

]
PT

[
0

Bw

]
+

[
CTDw

0

]

? −Q + CT
1C1 0

? ? −�2I + DT
wDw




¡ 0; (13)

where

.̂11 =

[
0 I

(A+ BK) −I

]T

P

+PT

[
0 I

(A+ BK) −I

]
+ Qh

[
X11 X12

? X22

]

+

[
Q + CTC + KTDTDK + Y1 + Y T

1 Y T
2

? QhZ

]
:

Using the idea in Fridman and Shaked (2002), deFne

P−1 = L=

[
L1 0

L2 L3

]
:

Pre- and post-multiply (13) by diag{LT; L1; I} and by
diag{L; L1; I}, respectively. Similarly, pre- and post-multiply
(7) by diag{LT; L1} and diag{L; L1}, respectively and in-
troduce change of variables such that[
M11 M12

? M22

]
, LT

[
X11 X12

? X22

]
L;

[
N1

N2

]
, LT

[
Y1

Y2

]
L1;

W , L1QL1; R, Z−1; V = KL1:

After some manipulation including the Schur complement,
we can represent conditions (13) and (7) by (11) and(12),
respectively. This completes the proof.

It is noted that the conditions in Theorem 4.1 are no longer
LMI conditions because of the term L1R−1L1 in (12). As a
result, unfortunately in this case, we cannot Fnd a maximum
Qh or minimum � using convex optimization algorithms. A
suboptimal maximum delay Qh or minimum � can be simply
obtained by setting R=L1 in (11) and (12), which results in
LMI conditions. However, with more computational e?ort,
better results can be obtained using an iterative algorithm,
which is presented next.
The form of nonlinearity L1R−1L1 in (12) coincides with

the one introduced in Moon et al. (2001). Therefore, fol-
lowing the similar step taken in Moon et al. (2001), we can
convert the original nonconvex feasibility problem charac-
terized by the matrix inequalities (11) and (12) to the fol-
lowing nonlinear minimization problem subject to LMIs:

Minimize tr(ST + L1J + RG)

subject to (11) and (14)

L1¿ 0; S ¿ 0;



M11 M12 N1

? M22 N2

? ? S


¿ 0;

[
T J

J G

]
¿ 0; (15)

[
S I

I T

]
¿ 0;

[
L1 I

I J

]
¿ 0;

[
R I

I G

]
¿ 0: (16)

If the solution of the above minimization problem is 3n,
that is, tr(ST + L1J + RG) = 3n, we can say from The-
orem 4.1 that the closed-loop system (10) controlled by
u(t)=VL−1

1 x(t) satisFes ‖z(t)‖2¡�‖w(t)‖2. Actually, uti-
lizing the linearization method (El Ghaoui, Oustry, & Ait
Rami, 1997), we can Fnd a suboptimal maximum delay for
some prescribed � or can Fnd a suboptimal minimum � for
some prescribed Qh relatively easily using an iterative algo-
rithm presented below. Note that condition (12) is used as a
stopping criterion in the algorithm. This is because our pur-
pose is to Fnd a feasible solution satisfying inequalities (11)
and (12), not to Fnd a solution such that tr(ST +L1J +RG)
is exactly equal to 3n.

Algorithm.

(1) Choose a suSciently small initial Qh¿ 0 (Choose a suf-
Fciently large initial �¿ 0) such that there exists a fea-
sible solution to (14), (15), and (16). Set Qhso = Qh (Set
�so = �).

(2) Find a feasible set (L01; L
0
2; L

0
3; M

0
11; M

0
12; M

0
22; N

0
1 ; N

0
2 ;

W 0; R0; V 0; S0; T 0; J 0; G0) satisfying (14), (15), and
(16). Set k = 0.
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(3) Solve the following LMI problem for the variables
(L1; L2, L3; M11; M12, M22; N1, N2; W; R, V; S; T; J; G)

Minimize tr(SkT +TkS+Lk1J +J kL1 +RkG+GkR)

subject to (14); (15); and (16):

Set Sk+1=S, Tk+1=T , Lk+1
1 =L1, J k+1=J , Rk+1=R,

and Gk+1 = G.
(4) If condition (12) is satisFed, then set Qhso= Qh (set �so=�)

and return to Step 2 after increasing Qh (decreasing �)
to some extent. If condition (12) is not satisFed within
a speciFed number of iterations, say kmax, then exit.
Otherwise, set k = k + 1 and go to Step 3.

Using the above algorithm, we can obtain a suboptimal
maximum of Qh (a suboptimal minimum of �). Later in Sec-
tion 6 we illustrate, using numerical examples, that the above
algorithm can provide satisfactory results. In the following
section, we extend the H∞ control obtained for nominal sys-
tems to that for uncertain systems (1).

5. Robust H∞ control for uncertain systems

In this section, we consider the robust H∞ control for
uncertain systems (1). For that purpose, we extend Theorem
4.1 to that for uncertain systems (1).

Theorem 5.1. For some prescribed �¿ 0 and Qh¿ 0,
assume that there exist L1¿ 0, L2, L3, M11, M12, M22,
N1, N2, W , R, V , and �= diag{�1I; : : : ; �rI} such that



811 812 −N1 0 L1CT 0 V TDT QhLT2 (EL1 + EbV )T

? 822 A1L1 − N2 Bw 0 0 0 QhLT3 0

? ? −W 0 0 L1CT
1 0 0 L1ET

1

? ? ? −�2I DT
w 0 0 0 0

? ? ? ? −I 0 0 0 0

? ? ? ? ? −I 0 0 0

? ? ? ? ? ? −I 0 0

? ? ? ? ? ? ? − QhR 0

? ? ? ? ? ? ? ? −�




¡ 0; (17)



M11 M12 N1

? M22 N2

? ? L1R−1L1


¿ 0; (18)

where

811 , L2 + LT2 +W + N1 + NT
1 + QhM11;

812 , (AL1 + BV )T − LT2 + L3 + NT
2 + QhM12;

822 , −L3 − LT3 + QhM22 + F�FT:

Then the uncertain system (1) controlled by u(t)=VL−1
1 x(t)

is stable and satis;es ‖z‖2¡�‖w‖2 for all nonzero
w∈L2[0;∞) and any constant time-delay h satisfying
06 h6 Qh.

Proof. It is suScient for the proof of Theorem 5.1 to show
that (11) is still satisFed even with A, A1, and B replaced by
A+FRE, A1 +FRE1 and B+FREb, respectively. DeFne
the matrix in left side of ‘¡’ in (11) to be9. Then, condition
(11) with A, A1, and B replaced by A+ FRE, A1 + FRE1

and B+ FREb, respectively, is written as

9+ QFR QE + QET�T QFT¡ 0; (19)

where
QF , [0 FT 0 0 0 0 0 0]T;

QE , [EL1 + EbV 0 E1L1 0 0 0 0 0]:

According to (3) in Lemma 2.1, (19) holds if there exists

�= diag{�1I; : : : ; �rI}¿ 0:

such that

9+ QF� QFT + QET�−1 QE¡ 0: (20)

By Schur complement, (20) is equivalent to (17). This com-
pletes the proof.

For Theorem 5.1, we can construct an iterative algorithm
in a similar way given in the previous section. In the subse-
quent section, numerical examples will be given to illustrate
the less conservatism of the proposed methods.

6. Numerical examples

Consider the linear uncertain time-delay system taken
from de Souza and Li (1999):


ẋ(t) = [A+RA(t)] x(t) + [A1 + RA1(t)] x(t − h)

+Bu(t) + Bww(t);

z(t) =

[
Cx(t)

Du(t)

]
;

(21)
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where

A=

[
0 0

0 1

]
; A1 =

[−1 −1

0 −0:9

]
;

Bw =

[
1

1

]
; B=

[
0

1

]
; C = [0 1]:

In Fridman and Shaked (2002), the case where RA(t) =
RA1(t)=0 andD=0:1 was considered and it is reported that,
for Qh=0:999, a minimum of �=0:1287 with a corresponding
gain K = [0 − 1:0285× 106] was obtained.

For the same system, we applied Theorem 4.1. Tables 1
and 2 show the controller gains of the H∞ controllers ob-
tained and the number of iterations for some prescribed
value of Qh and �, respectively. The number of iterations
denotes the iterations counted until the stopping criterion,
i.e. condition (12), was activated. Table 1 shows that, for
Qh=0:999, the proposedmethod can produce anH∞ controller
even for � = 0:1015, which is much smaller than the value
given in Fridman and Shaked (2002). It is also an impor-
tant observation that the controller gains are much smaller
than that given in Fridman and Shaked (2002). Because the
high control gain is very likely to lead to the input magni-
tude saturation, smaller gain for the same � seems desirable.
Table 2 shows that, for � = 0:1287, the system can be
stabilized for any time delay h6 1:25.

In de Souza and Li (1999), RA(t) and RA1(t) are un-
certain matrices satisfying ‖RA(t)‖6 0:2; ‖RA1(t)‖6 0:2;
∀t¿ 0 andD=0. In this case, the system (21) is represented
by (1) with

F =

[
0:2 0 0:2 0

0 0:2 0 0:2

]
; E =

[
1 0 0 0

0 1 0 0

]T

;

E1 =

[
0 0 1 0

0 0 0 1

]T

;

Eb = [0 0 0 0]T; �(t) =

[
�1(t) 0

0 �2(t)

]
;

where �1(t); �2(t)∈R2×2. It is reported that, applying the
method in de Souza and Li (1999), system (21) is robustly
stabilizable for Qh=0:3346. When Qh=0:3, the smallest � ob-
tainable was 1.95. When Qhwas decreased to 0.2, the smallest
obtainable � decreased to 0.66.
We applied Theorem 5.1 to this uncertain system. For

Qh = 0:8 and � = 0:05, the proposed method yielded the
controller

u(t) = [− 0:0337− 64:9821] x(t)

after 29 iterations. Note that the proposed method provides
H∞ controller achieving much smaller � for much bigger Qh,

Table 1
H∞ controller of Theorem 4.1 for Qh = 0:999

� Feedback gain Number of
iterations

0.1287 [− 0:0054 − 29:2947] 15
0.105 [0:9885 − 142:7580] 21
0.102 [2:5712 − 511:5304] 52
0.1015 [3:6828 − 827:0898] 74

Table 2
H∞ controller of Theorem 4.1 for � = 0:1287

Qh Feedback gain Number of
iterations

1.1 [0:1686 − 36:5849] 19
1.2 [0:4514 − 55:9983] 32
1.25 [0:6407 − 89:1149] 86

which implies that the proposed method is much less con-
servative than the existing results.

7. Conclusions

This paper proposed a new delay-dependent robust H∞
control for uncertain systems with a state-delay. First, we
presented a new delay-dependent bounded real lemma for
systems with a state-delay. For that purpose, we chose a
new Lyapunov–Krasovskii functional, with which we need
neither model transformation nor bounding for cross terms
in deriving delay-dependent results. Based on the bounded
real lemma obtained, the condition for the existence of H∞
control was given in terms of matrix inequalities including
nonlinear terms, which results in a nonconvex feasibility
problem. Because the original nonconvex feasibility prob-
lem is hard to solve, we provided an iterative algorithm us-
ing convex optimization as an alternative solution. Although
somewhat big computational burden is required to obtain a
controller, the proposed results are much less conservative
than the existing results in that the obtained controller allows
a larger delay bound for a Fxed performance bound and
achieves a lower performance bound for a Fxed time-delay.
This decreased conservatism was clearly demonstrated
using numerical examples.
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