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Abstract

A general receding horizon control (RHC), or model predictive control (MPC), for time-delay systems is proposed. The proposed RHC
is obtained by minimizing a new cost function that includes two terminal weighting terms, which are closely related to the closed-loop
stability. The general solution of the proposed RHC is derived using the generalized Riccati method. Furthermore, an explicit solution is
obtained for the case where the horizon length is less than or equal to the delay size. A linear matrix inequality (LMI) condition on the
terminal weighting matrices is proposed, under which the optimal cost is guaranteed to be monotonically non-increasing. It is shown that
the monotonic condition of the optimal cost guarantees closed-loop stability of the RHC. Simulations demonstrate that the proposed RHC
e9ectively stabilizes time-delay systems.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In industrial processes, time-delays often occur in the
transmission of material or information between di9erent
parts of a system. Chemical processing systems, transporta-
tion systems, communication systems, and power systems
are typical examples of time-delay systems. Because the
presence of a time-delay often causes serious deterioration
of the stability and performance of the system, consider-
able research has been devoted to the control of time-delay
systems.
For delay-free systems, the receding-horizon control

(RHC), or model predictive control (MPC), has received
considerable attention (Kwon & Pearson, 1977; Richalet,
Rault, Testud, & Papon, 1978; Kwon & Kim, 2000) because
of its many advantages, including ease of computation, good
tracking performance and I/O constraint handling capabil-
ity, compared with the popular steady-state inAnite horizon
linear quadratic (LQ) control. While the steady-state LQ
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control for linear systems is obtained from the algebraic
Riccati equation, the RHC for linear systems is obtained
from the di9erential or di9erence Riccati equation on a Anite
interval, which is easier to solve. Therefore, RHC has been
widely used, particularly in the chemical process industries
(Richalet et al., 1978).
For time-delay systems, there are no general results for

the RHC. A simple control method based on the receding
horizon concept has appeared in (Kwon, Jin Won Kang,
Young Sam Lee, & Young Soo Moon, 2003). However, it
does not have a state weighting in the cost function. Fur-
thermore, it does not guarantee closed-loop stability by de-
sign, and therefore stability can be checked only after the
controller has been designed.
In RHC, the terminal weighting matrices in the cost func-

tion are crucial for stability. The cost function taken in this
paper di9ers from the existing forms used in (Krasovskii,
1962; Kushner & Barnea, 1970; Ross, 1971; Uchida,
Shimemura, Kubo, & Abe, 1988) which consider the op-
timal control problem for time-delay systems. The cost
function in this paper has an additional terminal weighting
matrix on x(t + T + s), −h6 s6 0, where T denotes the
horizon length. This additional terminal weighting matrix
is necessary to guarantee closed-loop stability. For the cost
function with this additional weighting matrix, we found
no optimal solution in the literature. We Arst derive the
optimal solution for this cost function using the generalized
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Riccati method taken in (Eller, Aggarwal, & Banks, 1969)
and then provide the general solution of the proposed RHC
using this solution. The monotonic condition of the opti-
mal cost, under which the optimal cost is guaranteed to
be monotonically nonincreasing, is proposed in terms of a
linear matrix inequality on the terminal weighting matrices.
Using the derived condition, we prove the stability of the
proposed RHC in this paper.

2. Receding horizon control for time-delay systems

Consider a time delay system

ẋ(t) = Ax(t) + A1x(t − h) + Bu(t); (1)

where the initial condition is x(
) = �(
); 
∈ [ − h; 0],
x(t)∈Rn is the state, u(t)∈Rm is the input, and A; A1∈Rn×n;
B∈Rn×m are system matrices. h¿ 0 is the delay, and �(t)
is a continuous function. In order to obtain a receding hori-
zon control, we Arst consider a Anite horizon cost function
represented by

J (xt0 ; u; t0; tf) =
∫ tf

t0
[xT(
)Qx(
) + uT(
)Ru(
)] d


+ xT(tf)F1x(tf)

+
∫ 0

−h
xT(tf + s)F2x(tf + s) ds; (2)

where xt0 =x(t0+s), s∈ [−h; 0], is a continuous function, t0
is the initial time, tf is the terminal time, and Q¿ 0, R¿ 0,
F1¿ 0, and F2¿ 0. tf − t0¿ 0 is the horizon length. It is
noted that the cost function (2) has two terminal weight-
ing terms. The optimal control minimizing the cost function
(2) and the corresponding optimal cost will be denoted by
u∗(
); t06 
6 tf, and J ∗(xt0 ; t0; tf), respectively. It is ap-
parent that J ∗(xt0 ; t0; tf)= J (xt0 ; u

∗; t0; tf). The RHC is then
obtained by minimizing the cost function (2) with the ini-
tial time t0 and the terminal time tf replaced by the current
time t and t+T , respectively, where T ¿ 0 is constant. The
stability of the proposed RHC depends on the choice of ter-
minal weighting matrices F1 and F2. In this section, we will
Arst present the solution of the RHC. Stability issues will be
covered in subsequent sections.

2.1. The general solution

The optimal control problem for time-delay sys-
tems with the cost function (2) with F2 = 0 was con-
sidered in (Eller et al., 1969) by using the gener-
alized Riccati method. We can obtain an RHC for
the case of F2 = 0 using the solution given in (Eller
et al., 1969). However, it is important to note that RHC
for F2 = 0 does not have guaranteed stability, which will
be shown in subsequent sections. In this subsection, we

derive the RHC for the time-delay systems with the cost
function (2) with F2 �= 0, by using the generalized Riccati
method as in (Eller et al., 1969). The following notation is
used.

(1) C[ − h; 0] is the space of functions continuous on
[ − h; 0]. By using this notation, x
 is in C[ − h; 0].

(2) Let V (
; x
) : [t0; tf] × C[ − h; 0] → R be a continuous
and di9erentiable functional, so deAne

d
d


V (
; x
)
∣∣∣∣
u(
;x
)

, lim
P
→0

[
V (
+P
; xu
+P
) − V (
; x
)

P


]
;

where xu
+P
(s) = x(
 + P
 + s); s∈ [ − h; 0] is the
solution of system (1).

The following lemma, which is modiAed from that given in
(Eller et al., 1969) to include the case of F2 �= 0, establishes
a suQcient condition for a control u∗ to be optimal.

Lemma 2.1. If it is possible to 1nd a continuous and dif-
ferentiable functional V (
; x
) : [t0; tf] × C[ − h; 0] → R,
and a vector functional u∗(
; x
) : [t0; tf]×C[−h; 0] → Rm

such that

(i) V (tf; xtf) = xT(tf)F1x(tf)

+
∫ 0

−h
xT(tf + s)F2x(tf + s) ds;

(ii)
d
d


V (
; x
)
∣∣∣∣
u∗(
;x
)

+ xT(
)Qx(
)

+ u∗T(
; x
)Ru∗(
; x
) = 0;

(iii)
d
d


V (
; x
)
∣∣∣∣
u(
;x
)

+ xT(
)Qx(
) + uT(
; x
)Ru(
; x
)

¿
d
d


V (
; x
)
∣∣∣∣
u∗(
;x
)

+ xT(
)Qx(
)

+ u∗T(
; x
)Ru∗(
; x
);

for all 
∈ [t0; tf] and all x
 ∈C[ − h; 0]. Then V (t0; xt0 ) =
J (xt0 ; u

∗; t0; tf)6 J (xt0 ; u; t0; tf).

This lemma can be proven in a similar way to that given
in (Eller et al., 1969). Therefore, the proof is omitted. This
lemma states that V (
; x
) and u∗(
; x
) satisfying conditions
(i) to (iii) are the optimal cost and the optimal control for the
optimal control problem with the Anite horizon cost function
(2). The notation u(
; x
) denotes that the control law is in
the form of a distributed state feedback controller.
For simplicity, the complete derivation of the optimal con-

trol using Lemma 2.1 is given in the Appendix. The optimal
control u∗(
), t06 
6 tf, minimizing the cost function (2)
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on [t0; tf] is represented as follows:

u∗(
) =−R−1BT

[
P1(
)x(
) +

∫ 0

−h
P2(
; s)x(
+ s) ds

]
;

for t06 
¡ tf − h; (3)

= − R−1BT

[
W1(
)x(
)

+
∫ tf−
−h

−h
W2(
; s)x(
+ s) ds

]
;

for tf − h6 
6 tf; (4)

where P1(
) and P2(
; s) are determined as follows:

Ṗ1(
) − P1(
)BR−1BTP1(
) + P2(
; 0) + PT
2 (
; 0)

+ATP1(
) + P1(
)A+ Q = 0;

(
@
@


− @
@s

)
P2(
; s) + ATP2(
; s) + PT

3 (
; 0; s)

−P1(
)BR−1BTP2(
; s) = 0;

(
@
@


− @
@r

− @
@s

)
P3(
; r; s) − PT

2 (
; s)BR
−1BTP2(
; r) = 0;

with boundary conditions

AT
1P1(
) = PT

2 (
;−h); AT
1P2(
; s) = PT

3 (
;−h; s);

where t06 
¡ tf − h. W1(
) and W2(
; s) are determined
as follows:

Ẇ 1(
) − W1(
)BR−1BTW1(
) + ATW1(
)

+W1(
)A+ Q + F2 = 0;

(
@
@


− @
@s

)
W2(
; s) + ATW2(
; s)

−W1(
)BR−1BTW2(
; s) = 0;

(
@
@


− @
@r

− @
@s

)
W3(
; r; s)

−W T
2 (
; s)BR

−1BTW2(
; r) = 0;

with boundary conditions

AT
1W1(
) =W T

2 (
;−h); AT
1W2(
; s) =W T

3 (
;−h; s);

where tf−h6 
¡ tf. Furthermore, the following boundary
conditions must be satisAed:

W1(tf) = F1;

P1(tf − h) =W1(tf − h);

P2(tf − h; s) =W2(tf − h; s);

P3(tf − h; r; s) =W3(tf − h; r; s);

where −h6 s6 0 and −h6 r6 0.

Remark 2.1. In (Eller et al., 1969), similar types of cou-
pled partial di9erential equations to the above ones were
derived. The di9erence is that the proposed partial di9er-
ential equation on W1(
) for tf − h6 
6 tf has the term
F2, while the one in (Eller et al., 1969) does not. In (Eller
et al., 1969), an algorithm to solve those partial di9erential
equations was developed by transforming the original par-
tial di9erential equations to ordinary di9erential equations.
By modifying that algorithm such that it takes the di9er-
ence in W1(
) into account, the partial di9erential equations
given above can also be solved.

In RHC, the initial time t0 is the current time t and the
terminal time tf is t+T . RHC is obtained by replacing 
with
t. Depending on the horizon length T , RHC is represented
in two di9erent forms.

u∗(t) =−R−1BT

[
P1(t)x(t) +

∫ 0

−h
P2(t; s)x(t + s) ds

]
;

T ¿h; (5)

= − R−1BT

[
W1(t)x(t) +

∫ T−h

−h
W2(t; s)x(t + s) ds

]
;

T6 h: (6)

It should be noted that P1(t); P2(t; s); W1(t), andW2(t; s) are
not dependent on t because the horizon length tf − t0 =T is
constant and the system is time-invariant. Therefore we can
denote P1(t); P2(t; s); W1(t), andW2(t; s) by P1; P2(s); W1,
and W2(s), respectively. Therefore, the RHC can be rewrit-
ten as follows:

u∗(t) =−R−1BT

[
P1x(t) +

∫ 0

−h
P2(s)x(t + s) ds

]
;

T ¿h; (7)

= − R−1BT

[
W1x(t) +

∫ T−h

−h
W2(s)x(t + s) ds

]
;

T6 h: (8)

2.2. The closed-loop solution for T6 h

The horizon length T = tf − t0 is a design parameter and
therefore can be chosen such that T6 h. In this section, we
consider the case of T6 h, i.e., tf6 t0 + h. In this case,
we use the existing optimal control theory developed for
delay-free systems. Assuming tf6 t0 + h, the cost function
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(2) can be rewritten as

J (xt0 ; u; t0; tf) =
∫ tf

t0
[xT(
) RQx(
) + uT(
)Ru(
)] d


+ xT(tf)F1x(tf)

+
∫ −(tf−t0)

−h
xT(tf + s)F2x(tf + s) ds; (9)

where RQ = Q + F2. It should be noted that the last integral
term in the cost function (9) is constant, given xt0 . Therefore,
instead of the cost function in (9), we will consider the
following cost function:

Ĵ (xt0 ; u; t0; tf) =
∫ tf

t0
[xT(
) RQx(
) + uT(
)Ru(
)] d


+ xT(tf)F1x(tf): (10)

It is apparent that the optimal control minimizing the cost
function Ĵ also minimizes the original cost function J . Given
xt0 , x(
−h) for t06 
6 tf is a known term since tf6 t0+h.
Therefore, we can use the existing optimal control theory
(Kirk, 1970) to obtain the optimal control for the time-delay
system (1). The necessary and suQcient conditions for
optimal control are as follows:

ẋ(
) = Ax(
) + A1x(
 − h) + Bu(
); (11)

ṗ(
) = − RQx(
) − ATp(
); (12)

0 = Ru(
) + BTp(
); (13)

p(tf) = F1x(tf); (14)

where t06 
6 tf. From (13) the optimal control is
represented by

u(
) = −R−1BTp(
); t06 
6 tf: (15)

Substituting (15) into (11) yields

ẋ(
) = Ax(
) + A1x(
 − h) − BR−1BTp(
):

Therefore, we have the set of 2n linear di9erential equations[
ẋ(
)

ṗ(
)

]
=

[
A −BR−1BT

− RQ −AT

] [
x(
)

p(
)

]
+

[
A1

0

]
x(
 − h):

(16)

DeAne

H,

[
A −BR−1BT

− RQ −AT

]
;

�(
), eH
 =

[
�11(
) �12(
)

�21(
) �22(
)

]
:

Let �(
) = eH
. Because tf6 t0 + h, x(
 − h) is a known
term for t06 
6 tf. Therefore, using linear system theory,

we obtain[
x(tf)

p(tf)

]
=

[
�11(tf − 
) �12(tf − 
)

�21(tf − 
) �22(tf − 
)

] [
x(
)

p(
)

]

+
∫ tf−
−h

−h

[
�11(tf−
−s−h)A1x(
+ s)

�21(tf−
−s−h)A1x(
+ s)

]
ds:

(17)

From the boundary conditions (14) and (17) we obtain

p(
) =W1(
)x(
) +
∫ tf−
−h

−h
W2(
; s)x(
+ s) ds; (18)

where

W1(
) = [�22(tf − 
) − F1�12(tf − 
)]−1

×[F1�11(tf − 
) − �21(tf − 
)];

W2(
; s) = [�22(tf − 
) − F1�12(tf − 
)]−1

×[F1�11(tf − 
 − s − h)

−�21(tf − 
 − s − h)]A1:

The RHC is obtained by replacing 
 by t, t0 by t, and tf by
t + T , respectively, as follows:

u∗(t) = −R−1BT

[
W1(t)x(t) +

∫ T−h

−h
W2(t; s)x(t + s) ds

]
:

Note that W1(t) and W2(t; s) are independent of t. There-
fore, we can denote W1(t) and W2(t; s) by W1 and W2(s),
respectively. Therefore, RHC can be written in the simpler
form as

u∗(t) = −R−1BT

[
W1x(t) +

∫ T−h

−h
W2(s)x(t + s) ds

]
;

(19)

where

W1 = [�22(T ) − F1�12(T )]−1[F1�11(T ) − �21(T )];

W2(s) = [�22(T ) − F1�12(T )]−1[F1�11(T − s − h)

−�21(T − s − h)]A1:

However, the above formula is not recommended numeri-
cally because H has unstable eigenvalues. Using the idea in
(Lewis & Syroms, 1995), we can obtain the explicit repre-
sentation for W1 and W2(s) for the case where the eigenval-
ues of H are not on the imaginary axis.
The matrixH, whose eigenvalues are not on the imaginary

axis, is decomposed as

H =WDW−1;
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where

D =

[ −M 0

0 M

]
; W =

[
W11 W12

W21 W22

]
:

M is a diagonal matrix containing the unstable eigenvalues
ofH. The columns ofW are eigenvectors of the correspond-
ing eigenvalues. Denote W−1 by

W−1 =

[
Ŵ 11 Ŵ 12

Ŵ 21 Ŵ 22

]
:

We can then represent W1 and W2(s) explicitly as

W1 = [ − RW 1Ŵ 12 + Ŵ 22]−1[ RW 1Ŵ 11 − Ŵ 21];

W2(s) = [ − RW 1Ŵ 12 + Ŵ 22]−1e−M (s+h)

×[e−M (T−s−h) RW 1(T )e−M (T−s−h)Ŵ 11 − Ŵ 21]A1;

where

RW 1(T ) = [W22 − F1W12]−1[F1W11 − W21];

RW 1 = e−MT RW 1(T )e−MT :

3. Monotonic condition of the optimal cost

In this section, we present a condition on the terminal
weighting matrices F1 and F2, under which the optimal cost
J ∗(xt0 ; t0;  ) does not increase as the terminal time  in-
creases. We will call it a monotonic condition of the optimal
cost on the terminal weighting matrices.

Theorem 3.1. Assume that F1 and F2 in (2) satisfy the
following matrix inequality for some K1 and K2:[

P11 F1(A1 + BK2) + KT
1 RK2

(A1 + BK2)TF1 + KT
2 RK1 KT

2 RK2 − F2

]

6 0; (20)

where P11=(A+BK1)TF1+F1(A+BK1)+Q+KT
1 RK1+F2.

The optimal cost J ∗(xt0 ; t0;  ) then satis1es the following
relation:

@J ∗(xt0 ; t0;  )
@ 

6 0: (21)

Proof.

@J ∗(xt0 ; t0;  )
@ 

=lim
"→0

1
"

{J ∗(xt0 ; t0;  + ") − J ∗(xt0 ; t0;  )};

=lim
"→0

1
"

{∫  +"

t0
[ RxT(
)Q Rx(
) + Ru T(
)R Ru(
)] d


+ RxT( + ")F1 Rx( + ")

+
∫ 0

−h
RxT( + "+ s)F2 Rx( + "+ s) ds

−
∫  

t0
[x̂T(
)Qx̂(
) + û T(
)Rû(
)] d


− x̂T( )F1x̂( )

−
∫ 0

−h
x̂T( + s)F2x̂( + s) ds

}
;

where Ru(·) and û(·) are the optimal controls which minimize
the cost function J for the terminal time  +" and  , respec-
tively. Rx(·) and x̂(·) are state trajectories generated when the
system is controlled by Ru(·) and û(·), respectively. Assume
that the control Ru(
) is replaced by ũ(
), which is given by

ũ(
) =

{
û(
); t06 
¡ 

K1x̂(
) + K2x̂(
 − h);  6 
6  + ":
(22)

It is noted that x̂(
) for 
∈ [ ;  + "] is the state trajectory
resulting from ũ(
). ũ(
) is not an optimal control in case
that the terminal time is  + ". Therefore, we have
@J ∗(xt0 ; t0;  )

@ 

6 lim
"→0

1
"

{∫  +"

 
[x̂T(
)Qx̂(
)+(K1x̂(
)+K2x̂(
−h))T

×R(K1x̂(
) + K2x̂(
 − h))] d
+x̂T( +")F1x̂( +")

+
∫ 0

−h
x̂T( + "+ s)F2x̂( + "+ s) ds

− x̂T( )F1x̂( ) −
∫ 0

−h
x̂T( + s)F2x̂( + s) ds

}
;

=x̂T( )Qx̂( ) + (K1x̂( ) + K2x̂( − h))TR

×(K1x̂( ) + K2x̂( − h)) +
d
d 

x̂T( )F1x̂( )

+
d
d 

∫ 0

−h
x̂T( + s)F2x̂( + s) ds;

=

[
x̂( )

x̂( − h)

]T

#

[
x̂( )

x̂( − h)

]
;

where # is the matrix in (20). The matrix # is independent
of both t0 and  . Therefore, it is clear that

@J∗(xt0 ;t0 ; )
@ 6 0

for any  ¿ t0 if #6 0. This completes the proof.

Remark 3.1. It is noted that the case of F2 =0 corresponds
to a conventional cost function chosen to derive the RHC for
delay-free systems. In that case, however, inequality (20) is
not feasible. Adding the last term with nonzero F2 in (2)
makes inequality (20) more likely to be feasible.
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Remark 3.2. The last segment of control (22) is arbitrary
and chosen to obtain the cost monotonicity condition (21).
There are multiple choices. We choose the control form
K1x(
)+K2x(
− h) in order to represent a suQcient condi-
tion for stability on terminal weighting matrices F1 and F2

in terms of LMI for easy computation.

Recently numerous useful algorithms to solve linear
matrix inequality problems have been developed. If the in-
equality condition (20) can be represented in an LMI form,
we will be able to obtain the solution easily. Therefore, the
matrix inequality (20) in Theorem 3.1 is converted to an
LMI as follows:

Theorem 3.2. Assume that there exist X ¿ 0, S, Y1, and
Y2 such that


(AX+BY1)T+(AX+BY1) (A1S+BY2) XQ
1
2 Y T

1 R
1
2 X

(A1S + BY2)T −S 0 Y T
2 R

1
2 0

Q
1
2X 0 −I 0 0

R
1
2 Y1 R

1
2 Y2 0 −I 0

X 0 0 0 −S




6 0: (23)

Then F1 = X−1, F2 = S−1, K1 = Y1X−1; and K2 = Y2S−1

satisfy the matrix inequality (20) of Theorem 3.1.

Proof. The inequality condition (20) can be rearranged as[
(A+ BK1)TF1 + F1(A+ BK1) F1(A1 + BK2)

(A1 + BK2)TF1 −F2

]

+


Q

1
2 KT

1 R
1
2 I

0 KT
2 R

1
2 0






I 0 0

0 I 0

0 0 F2




×




Q
1
2 0

R
1
2K1 R

1
2K2

I 0


6 0: (24)

By introducing change of variables such that

X = F−1
1 ; S = F−1

2 ; Y1 = K1F−1
1 ; Y2 = K2F−1

2 ;

and using the Schur complement, the inequality condition
(24) is equivalently changed into the LMI form of (23).
This completes the proof.

4. Stability of RHC

This section investigates the stability of the RHC.

Theorem 4.1. GivenQ¿ 0 and R¿ 0, if @J∗(xt0 ;t0 ; )
@ 6 0 for

 ¿ t0, system (1) controlled by the RHC is asymptotically
stable.

Proof. If
@J∗(xt0 ;t0 ; )

@ 6 0 for  ¿ t0, we have

J ∗(xt ; t; t + T ) =
∫ t+(

t
[xT(
)Qx(
) + u∗T(
)Ru∗(
)] d


+ J ∗(xt+(; t + (; t + T );

¿
∫ t+(

t
[xT(
)Qx(
) + u∗T(
)Ru∗(
)] d


+ J ∗(xt+(; t + (; t + T + ():

Rearranging the above inequality and dividing it by ( yield

J ∗(xt+(; t + (; t + T + () − J ∗(xt ; t; t + T )
(

6− 1
(

∫ t+(

t
[xT(
)Qx(
) + u∗T(
)Ru∗(
)] d
:

If ( → 0, we obtain

dJ ∗(xt ; t; t + T )
dt

6− [xT(t)Qx(t) + u∗T(t)Ru∗(t)];

which shows that J ∗(xt ; t; t + T ) is nonincreasing. Because
J ∗(xt ; t; t+T )¿ 0, J ∗(xt ; t; t+T ) → c and dJ∗(xt ;t;t+T )

dt → 0
as t → ∞, where c is a nonnegative constant. From this, it is
clear that x(t) → 0 and u∗(t) → 0 as t → ∞. Therefore the
closed-loop system is asymptotically stable. This completes
the proof.

Using the suQcient conditions for monotonic cost, the
following theorem is obtained.

Theorem 4.2. Given Q¿ 0 and R¿ 0, if the matrix in-
equality (20) or the LMI (23) is feasible, system (1) is
asymptotically stabilizable with the proposed RHC.

5. Numerical examples

In this section, a numerical example is presented to illus-
trate the proposed methods.

Example 5.1. Consider a time-delay system whose system
matrices are given by

A=

[ −1 1

3 2

]
; A1 =

[
0 0

−1 −0:5

]
; B=

[
1

3

]
:

The delay size of the system is h = 1. It is noted that this
system is open-loop unstable. The weighting matrices Q and
R are chosen such that Q= I and R= I . Terminal weighting
matrices F1 and F2 guaranteeing the closed-loop stability
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Fig. 1. State trajectories of x2 due to RHCs with di9erent horizon lengths.

are obtained by solving the LMI (23)

F1 =

[
4:7880 1:9737

1:9737 7:1028

]
; F2 =

[
1:0799 0:0831

0:0831 0:9533

]
:

We design three RHCs with the horizon lengths, T =
0:5; 1, and 1.5 and apply them to the system with initial state
�1(() = 0:2; �2(() = 0:1, −16 (6 0. In order to measure
the performances of the designed controllers, we deAne an
integrated cost

JINT =
∫ 10

0
[xT(t)Qx(t) + uT(t)Ru(t)] dt:

Fig. 1 compares the state trajectories of x2 resulting from
those three RHCs. Note that JINT decreases as T increases.
In the case of T =1, the explicit RHC is given by (19) with
W1 and W2(s)

W1 =

[
1:1469 0:0444

0:0444 0:7552

]
;

W2(s) =

[
W11(s) W12(s)

W21(s) W22(s)

]
;

where

W11(s) =−0:016322e5:2545s + 0:13599e1:8885s

− 0:22032e−5:2545(s+1) + 0:0423e−1:8885(s+1);

W12(s) =−0:0081609e5:2545s + 0:067996e1:8885s

− 0:11016e−5:2545(s+1) + 0:02115e−1:8885(s+1);

W21(s) = 0:0056925e5:2545s − 0:058528e1:8885s

− 0:68129e−5:2545(s+1) − 0:018451e−1:8885(s+1);

W22(s) = 0:0028463e5:2545s − 0:029264e1:8885s

− 0:34064e−5:2545(s+1) − 0:0092257e−1:8885(s+1):

In case of T=1:5, the horizon length is longer than the delay
size, h. In this case, the coupled partial di9erential equations
should be solved to obtain the RHC given in (7). As already
stated in Remark 2.1, we use the algorithm presented in
(Eller et al., 1969) to solve the partial di9erential equations.
The step size for the numerical integration was chosen to
be 0.01.
From this example, we see that the proposed RHC sta-

bilizes time-delay systems. Furthermore, by adjusting the
horizon length, we can change the controller performance.

6. Conclusions

A stabilizing RHC (or MPC) for linear time-delay sys-
tems is proposed. We propose a new receding horizon cost
function and have derived the RHC minimizing that cost
function. The general solution of the proposed RHC was de-
rived using the generalized Riccati method. Furthermore, the
explicit solution was obtained for the case where the hori-
zon length is less than or equal to the delay. A linear matrix
inequality condition on the terminal weighting matrix for
the RHC, which guarantees that the optimal cost is mono-
tonic for the time-delay system, was proposed. Under that
condition, it has been shown that the closed-loop stability of
the RHC is guaranteed. The proposed RHC for time-delay
systems in this paper is given for the Arst time in a general
form. The solution of the proposed RHC is obtained more
easily than the conventional inAnite-horizon LQ control, for
which coupled algebraic Riccati equation should be solved.
Furthermore, the proposed RHC has a merit that it can take
the performance criterion into account, while some of other
stabilizing state-feedback controls for time-delay systems
can only achieve stability. It can be widely used for various
processes, particularly for chemical processes. Extension of
the proposed results to time-delay systems with input con-
straint is considered to be an interesting future work.

Appendix

As in (Eller et al., 1969), two continuous functions,
V1(
; x
) and V2(
; x
), are chosen to avoid discontinuity
and satisfy Condition (i) of Lemma 2.1. Using V1(
; x
)
and V2(
; x
), the optimal controls u1(·) and u2(·) are
also obtained for each horizon, i.e., t06 
¡ tf − h and
tf − h6 
6 tf.
Case I (t06 
¡ tf − h):
The proof for Case I is exactly the same as that given in

(Eller et al., 1969). See (Eller et al., 1969) for the form of
V1(
; x
) and the complete proof.
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Case II (tf − h6 
6 tf):
DeAne

V2(
; x
)

=xT(
)W1(
)x(
) + 2xT(
)
∫ tf−
−h

−h
W2(
; s)x(
+ s) ds

+
∫ tf−
−h

−h

∫ tf−
−h

−h
xT(
+ s)W3(
; r; s)x(
+ r) dr ds

+
∫ 0

tf−
−h
xT(
+ s)F2x(
+ s) ds: (A.1)

Using the relations∫ 0

tf−
−h
xT(
+ s)F2x(
+ s) ds=

∫ 


tf−h
xT(*)F2x(*) d*;

d
d


∫ 


tf−h
xT(*)F2x(*) d*= xT(
)F2x(
);

and proceeding as in Case I of (Eller et al., 1969) produce
the following set of conditions:

Ẇ 1(
) − W1(
)BR−1BTW1(
) + ATW1(
)

+W1(
)A+ Q + F2 = 0;(
@
@


− @
@s

)
W2(
; s) + ATW2(
; s)

−W1(
)BR−1BTW2(
; s) = 0;(
@
@


− @
@r

− @
@s

)
W3(
; r; s)

−W T
2 (
; s)BR

−1BTW2(
; r) = 0;

with boundary condition

AT
1W1(
) =W T

2 (
;−h);

AT
1W2(
; s) =W T

3 (
;−h; s):

The optimal control u2(
) is

u2(
) =−R−1BTW1(
)x(
)

−R−1BT
∫ tf−
−h

−h
W2(
; s)x(
+ s) ds;

where tf −h6 
6 tf. Because V1(
; x
) is the optimal cost
function for t06 
¡ tf −h and V2(
; x
) is the optimal cost
function for tf−h6 
6 tf, it is clear that V1(tf−h; xtf−h)=
V2(tf − h; xtf−h) or

xT(tf − h)[P1(tf − h) − W1(tf − h)]x(tf − h)

+ xT(tf − h)
∫ 0

−h
[P2(tf − h; s) − W2(tf − h; s)] ds

+
∫ 0

−h

∫ 0

−h
xT(tf − h+ s)[P3(tf − h; r; s)

−W3(tf − h; r; s)]x(tf − h+ r) dr ds= 0: (A.2)

must be satisAed. Eq. (A.2) is satisAed if and only if

P1(tf − h) =W1(tf − h);

P2(tf − h; s) =W2(tf − h; s);

P3(tf − h; r; s) =W3(tf − h; r; s):

Further,W1(tf −h),W2(tf −h) andW3(tf −h; r; s) are used
as additional boundary conditions. V1(
; x
), V2(
; x
), u1(
)
and u2(
) are now combined as follows:

u∗(
) = u1(
); t06 
¡ tf − h;

= u2(
); tf − h6 
6 tf;

V (
; x
) = V1(
; x
); t06 
¡ tf − h;

= V2(
; x
); tf − h6 
6 tf:

Therefore, u∗(
) and V (
; x
) deAned in this way satisfy
Conditions (2) and (3) of Lemma 2.1. All that remains is
to satisfy Condition (1) of Lemma 2.1. To do this, set

W1(tf) = F1:

Thus, V (
; x
) and u∗(
) satisfy Lemma 2.1 and therefore
are the optimal cost and the optimal control, respectively.
Note that V (
; x
) is both continuous and di9erentiable
at time 
 = tf − h from boundary conditions so that
Lemma 2.1 is well applied on [t0; tf].
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