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Abstract

This paper proposes a new method to obtain a maximum allowable delay bound for a scheduling of networked control systems.

The proposed method is formulated in terms of linear matrix inequalities and can give a much less conservative delay bound than

the existing methods. A network scheduling method is presented based on the delay obtained through the proposed method, the

bandwidth of a network is allocated to each node and the sampling period of each sensor and controller is determined. The

presented method can handle three types of data (periodic data, sporadic data, and message) and guarantees real-time transmission

of periodic and sporadic data, and minimum network utilization for non-real time message.

r 2002 Elsevier Ltd. All rights reserved.
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1. Introduction

In distributed control systems, a feedback control loop
is closed through a network. Distributed control systems
with networks are called networked control systems
(NCSs). In an NCS, various delays with variable length
occur due to sharing a common network medium, which
are called network-induced delays. Network-induced
delays can vary widely according to the transmission time
of messages and the overhead time. The network in the
NCS should handle three types of data: periodic data,
sporadic data, message. The transmission time through the
media is largely dependent on the network protocols,
especially data link layer protocols of networks and data
length. Hence, it is necessary to present some methods to
make these network-induced delays bounded and smaller,
which are called network scheduling methods for the NCS.
In feedback control systems, it is important that

sampled data should be transmitted within a sampling
period and that stability of control systems should be
guaranteed. While a shorter sampling period is prefer-

able in most control systems, for some purposes it can
be lengthened up to a certain bound within which
stability of the system is guaranteed in spite of the
performance degradation. This certain bound is called a
maximum allowable delay bound (MADB). Therefore,
it is necessary to find the MADB for stability of the
NCS, and then to find an appropriate network schedul-
ing method that limits the network-induced delay to less
than the MADB. A network scheduling method is
required to reduce network-induced delays within the
MADBs, while guaranteeing real-time transmission of
sporadic and periodic data, and to minimize network
utilization for non-real time message.
An MADB has been obtained from stability condi-

tions of control systems. There have been some results
on the stability of NCSs (Asok & Yoram, 1988; Krtolica
et al., 1994; Feng-Li Lian, Moyne, & Tilbury, 2002), but
these were concerned with obtaining stability conditions
of the NCS with a given delay. There have been also
some results on the MADB for stability in non-
networked control systems (Mori, Fukuma, & Kuwa-
hara, 1981; Su & Huang, 1992). In these papers, the
MADB is obtained using the Ricatti equation approach,
which yields conservative delay bounds. Less conserva-
tive results on the MADB in non-networked control
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systems are reported in Li and de Souza (1997a, b) and
Park (1999). However, these results still remains to be
improved (Moon, Park, Kwon, & Lee, 2001). The
MADB thus obtained can be extended as a maximum
bound of a sampling period in the NCS. That is, the
sampling periods determined by the proposed sampling
period decision algorithm can be set to values less than
the MADB.
A scheduling method was presented in the NCS with

fieldbus networks (Cavalieri, Stefano, & Mirabella 1995;
Beauvais & Deplanche, 1995). But those papers did not
consider the MADB and the controller delay time,
which were important in control applications. There
have been some studies on scheduling algorithms that
can be applied to the NCS (Beauvais & Deplanche,
1995; Hong, 1995). A dynamic scheduling algorithm
modified from the rate monotone scheduling algorithms
was presented for periodic and asynchronous data in
fieldbus networks. A heuristic algorithm was presented
for periodic tasks only (Beauvais & Deplanche, 1995),
but it did not support asynchronous data. The several

algorithms for dynamically scheduling of networked
control systems were proposed (Zuberi & Shin, 1997;
Hong Ye, Walsh, & Bushnell, 2001). It had limitations
when applied to the NCS because it did not consider
some characteristics of the NCS, such as the MADB
and sampling periods. A scheduling algorithm that
can allocate the bandwidth of a network and deter-
mine sensor data sampling periods was presented
(Hong, 1995). In Hong (1995), the NCS had only single
input and single output (SISO), only periodic data
were considered, and the MADB was not obtained
analytically.
A network scheduling method considering three types

of data based on a multi-input and multi-output
(MIMO) system was proposed (Park, Kim, Kim, &
Kwon, 2002). In this paper, the estimation of MADB
using the Ricatti equation is too conservative, which
means the estimated MADB is too small and the
network scheduling method discussed in this paper is
somewhat heuristic. In Branicky, Phillips, and Zhang
(2000), Wei Zhang, Branicky, and Phillips (2001) and
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Nomenclature

L
j
Si

the largest required time to start
transmitting sensor data in the basic sampling period

N the total number of nodes in the NCS
NE the number of basic sampling periods in the entire sampling period
NT

p the total number of transmissions of periodic data during the interval NET1

Np the number of sensor and actuator data packets for periodic data in UL; Un
S ; and Un

L

NM
P the maximum integer of NP

Na the total number of a nodes in the NCS (Hereinafter, a can be C (controller), A (actuator), or S (sensor))
Ni the total number of nodes in the ith loop
N1

a the number of a nodes in the ith loop
NM

S the maximum number of sporadic data which is arrived in a basic sampling period. The basic sampling
period means the minimum sampling period in all loops

Nb
A the number of actuators in UL

Nb
S the number of sensors in both UL and Un

S

P the total number of loops that use the same medium
Tj a sampling period of the jth loop
Tj
ai

the data transmission time of periodic data in the ith a node in the jth loop
Tb an interval for transmission of b data or messages. (Hereinafter, b can be P (Periodic Data), S (Sporadic

Data), or N (Messages))
Tx

O Overhead time of transmission
TO maximum overhead time in one node
Tx

O maximum overhead time related to nodes which do not take part in transmission during each basic sampling
period

TOb the maximum overhead time to transfer b data or a message packet
T

j
D the MADB in the jth loop

Ti
B the ith basic sampling period in the largest sampling period

UL a set of loops whose all nodes are included in the considered basic sampling period
Un

L a set of loops whose all nodes are not included in the considered basic sampling period
UN Utilization of messages in a basic sampling period
Um

N the minimum utilization for the messages
Un

S a set of sensors which are in Un
L
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Walsh and Hong Ye (2001), calculation methods of
MADBs and stability analysis of NCSs were presented.
However, these results were conservative to be of
practical use and still remains to be improved. Further
research is needed with regard to an estimation of a less
conservative MADB for stability of the NCS and
systematic scheduling methods for three types of data.
In this paper, a new method to obtain the MADB

guaranteeing a stability of the NCS is proposed in terms
of linear matrix inequalities (LMI). The proposed
method gives a much less conservative delay bound
than the existing methods. The paper includes a network
scheduling method considering three types of data based
on a MIMO system. The network scheduling method is
based on the results in Park et al. (2002). It allocates the
bandwidth of a network to a node, determines the
sensor data sampling periods of each loop using
the obtained MADB, guarantees real-time transmission
of sporadic data and periodic data within the sampling
periods, and minimizes the network utilization for
message.
This paper is organized as follows. In the following

section, an NCS model is described. In Section 3, an
MADB for the stability of the NCS is derived by LMI
formulation. In Section 4, a network scheduling method
that allocates the bandwidth and determines the
sampling period for the NCS is presented. In Section
5, the simulation results are given to show that the
method is useful. Finally, the conclusions are presented
in Section 6.

2. MADB for stability in control loop

NCSs can be described as Fig. 1. A control loop is
composed of a controller, sensors, and actuators. The
sensors, the actuators, and a controller share a common
communication medium.
The MADB is defined as the maximum allowable

interval from the instant when sensor nodes sample
sensor data from a plant to the instant when actuators
output the transferred data to the plant. If the sampling
period in the jth loop exceeds the given MADB, then
stability of the overall system could not be guaranteed.
In this case, the outputs of the plant could deviate from
the desired trajectory, or the controlled system. Hence, it
is necessary to derive the MADB from parameters and
configurations of the given plant and the controller.
Fig. 2 shows a feedback control system with network
induced delays.
The timing such an NCS is illustrated in Fig. 3. A

drawback with this setup is that system becomes time
varying.
In this paper, a stability is checked by single control

loop model with each sensor and actuator node. The
node which have a multiple control loop can be changed

to the sum of nodes have a single control loop. That is to
say, the node which have a multiple control loop can be
changed to the sum of nodes which have a single control
loop.
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Fig. 1. Diagram of control loops using a network.

Fig. 2. Networked control loops with sensors and actuators (Nilson,

1998).

Fig. 3. Timing of signals in the NCS.
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In Fig. 3, the timing diagram illustrates the process
output and sampling instants, the signal into the
controller node, the signal into the actuator node and
the network-induced delay.

2.1. MADB of NCS in continuous-time system

A plant in a single control loop j can be described in
the following state space form:

’xj
pðtÞ ¼ F j

p x j
pðtÞ þ G j

pu j
pðtÞ;

yj
pðtÞ ¼ Hj

pxj
pðtÞ; ð1Þ

where uj
pðtÞARN

j

A ; yj
pðtÞARN

j

S ; xj
pðtÞARN

j

P : N
j
A; N

j
S; and

N
j
P is the dimension of the sensor, actuator, and plant in
the control loop j: F j

p; G j
p; and Hj

p are matrices or
vectors of appropriate sizes.
A controller in the control loop j can be described by

’xj
cðtÞ ¼ F j

c x j
cðtÞ þ G j

cu j
cðtÞ;

yj
cðtÞ ¼ H j

c x j
cðt � *t j

cÞ þ E j
c u j

cðt � *t j
cÞ; ð2Þ

where uj
cðtÞARN

j

S ; yj
cðtÞARN

j

A ; xj
cðtÞARN

j

P : *t j
c is computa-

tion time in the controller j; which satisfies 0p*t j
cpt j

c;max;
where t j

c;max is the maximum computation time in the
controller j: For conveniences, the computation time in
the controller is treated in the same way as output delay.
Because data from the plant to the controller and from
the controller to the plant are transferred through the
common communication network, communication
delays exist. The communication delays in the control
loop j are modeled as

uj
cðtÞ ¼ yj

pðt � *t j
scÞ;

uj
pðtÞ ¼ yj

cðt � *t j
caÞ; ð3Þ

where 0p*t j
scpt j

sc;max; 0p*t j
capt j

ca;max; *t
j
sc and t j

sc;max are
communication delay and maximum communication
delay from sensors to a controller, respectively, and *tj

ca

and t j
ca;max are communication delay and maximum

communication delay from a controller to actuators,
respectively. In this paper, the lower and upper bounds
of tscðtÞ and tcaðtÞ are only used as constraints.
Using Eqs. (1)–(3), a control system in the control

loop j can be described as

’xjðtÞ ¼
F j

p 0

0 Fj
c

" #
xjðtÞ þ

0 0

G j
cH j

p 0

" #
xjðt � *t j

scÞ

þ
G j

pE j
c H j

p 0

0 0

" #
xjðt � *t j

sc � *t j
ca � *t j

cÞ

þ
0 G j

pH j
c

0 0

" #
xjðt � *t j

ca � *t j
cÞ; ð4Þ

where xjðtÞ ¼ ½xjT

p ðtÞ xj T

c ðtÞ�T:

Then the above equation can be rewritten as

’xjðtÞ ¼F jx jðtÞ þ F
j
1xjðt � t j

1Þ þ F
j
2xjðt � t j

2 Þ

þ F
j
3xjðt � t j

3Þ; ð5Þ

where

Fj ¼
F j

p 0

0 Fj
c

" #
; F

j
1 ¼

0 0

G j
cH j

p 0

" #
;

F
j
2 ¼

G j
pE j

c H j
p 0

0 0

" #
; F

j
3 ¼

0 G j
pH j

c

0 0

" #
;

0p*t j
1 ¼ *t j

scpt j
sc;max ¼ *t j

1;max;

0p*t j
2 ¼ *t j

sc þ *t j
ca þ *t j

cpt j
sc;max þ t j

ca;max þ t j
c;max

¼ *t j
2;max

and

0p*t j
3 ¼ *t j

ca þ *t j
cpt j

ca;max þ t j
c;max ¼ *t j

3;max:

Each control loop in the NCS can be described as in
Eq. (5) using three types of delays.
To generalize results to the multiple state-delayed

case, consider the following system:

’xðtÞ ¼ FxðtÞ þ
XN

i¼1

Fixðt � tiÞ;

xðtÞ ¼ fðtÞ; tA½�%t; 0�; ð6Þ

where xðtÞARn is the state, ti > 0 is the delay of the
system, fð�Þ is the initial condition, F ; Fi are real
constant matrices with appropriate dimensions, and %t is
upper bound of ti:
Our aim is to develop a new method to obtain the

MADB guaranteeing stability of the NCS. In obtaining
the results of this paper, the following upper bound for
the inner product of two vectors plays an important
role:

�2aTbp inf
X ;Y ;Z

a

b

" #T
X Y � I

YT � I Z

" #
a

b

" #
; ð7Þ

where
X Y

YT Z

� �
X0 and I denotes an identity matrix

with an appropriate dimension. Extending the idea of
Eq. (7), Lemma 1 is derived.

Lemma 1 (Moon et al., 2001). Assume that að�ÞARna ;
bð�ÞARnb ; and Nð�ÞARna	nb are defined on the interval O:

Then, for any matrices XARna	na ; YARna	nb ; and

ZARnb	nb ; the following holds:

� 2
Z
O

aTðaÞNbðaÞ da

p
Z
O

aðaÞ

bðaÞ

" #T
X Y �N

YT �NT Z

" #
aðaÞ

bðaÞ

" #
da;
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where

X Y

YT Z

" #
X0: ð8Þ

Theorem 1. If there exist P > 0; Qi > 0; Xi; Yi and

Zi; i ¼ 1;y;N; such that

P11 FTZ

ZA �G

" #
o0;

Xi Yi

YT
i Zi

" #
X0; ð9Þ

where

P119
T11 PF1 �Y

FT
1P �Y �Q

" #
;

F9½F F1 ? FN �;

F19½F1 ? FN �;

Y9½Y1 ? YN �;

Z9%t½Z1 ? ZN �;

Q9diagfQ1;y;QNg;

G9%t diagfZ1;y;ZNg;

T119FTP þ PF þ
XN

i¼1

fYi þ YT
i þ %tXi þ Qig;

then system (6) is asymptotically stable for any time-delay

ti satisfying 0ptip%ti; i ¼ 1;y;N:

This theorem extends the results in Moon et al.
(2001), which deals with an MADB for a single state-
delayed systems. The MADB can be obtained efficiently
using the MATLAB LMI Toolbox. System (5) can be
represented by Eq. (6) with N ¼ 3 and %t can be
interpreted as maxf%t1; %t2; %t3g:
The delay bound of each control loop is used as a

parameter in the determination of the sampling period
and allocation of bandwidth.

2.2. MADB of NCS in discrete-time system

As a simple example of extension to the discrete-time
case of Theorem 1, the system (10) is considered.
In a discrete-time system, the one-time-step delay is
considered:

xðk þ 1Þ ¼ FxðkÞ þ F1xðk � tÞ;

xðkÞ ¼ fðkÞ; kA½�%t; 0�; ð10Þ

where t > 1 is the delay of the system, fð�Þ is the
initial condition, F ; F1 are real constant matrices
with appropriate dimensions, and %t is upper bound
of t: A discrete-time equivalent of Theorem 1 is
represented by

Theorem 2. If there exist P > 0; Q > 0; X ; Y and Z;
such that

S11 �Y FTP %tðF � IÞTZ

�YT �Q FT1 P %tFT1 Z

PF PF1 �P 0

%tZðF � IÞ %tZF1 0 �%tZ

2
66664

3
77775o0;

S119� P þ %tX þ Y þ YT þ Q; ð11Þ

X Y

YT Z

" #
X0 ð12Þ

then system (10) is asymptotically stable for any time-

delay t satisfying 0ptp%t:

Theorem 2 can be proved via the similar procedure in
Appendix A. For the proof of Theorem 2, the conditions
of DV ðkÞ ¼ V ðk þ 1Þ � V ðkÞo0; DV ðkÞ ¼ DV1ðkÞ þ
DV2ðkÞ þ DV3ðkÞo0 can be obtained by Lemma 1.
An MADB in a discrete-time system is a maximum

sampling time which is obtained from Theorem 2. In
general, a faster sampling rate is said to be desirable in
sampled-data systems so the discrete-time control design
and performance can approximate that of the contin-
uous-time system. But in NCSs, a faster sampling rate can
increase network load, which in turn results in longer
delay of the signals. Thus finding a sampling rate that can
both tolerate the network-induced delay and achieve
desired system performance is important in NCS design.

3. Scheduling algorithm in multiple control loops

This section describes a network scheduling method
based on the MADB obtained through the proposed
method, the bandwidth of a network is allocated to each
node and the sampling period of each sensor and
controller is determined. For simplicity, let the loop
number with the smallest MADB be 1, and let us
renumber all loops according to the magnitude of the
MADB. That is, the smaller the MADB of a loop is, the
lower its loop number is. Note that this minimum
sampling period T1 is considered as a basic sampling
period. A basic sampling period consists of TP; TS; and
TN as shown in Fig. 4. In addition to the three periods,
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there can be a synchronization period. The synchroniza-
tion period is included in Tx

O:
The following assumptions are used in this paper:

* In networks, communications are error-free. That is,
there are no failures in transferring messages.

* Sampling time of sensors in a loop is synchronized at
starting instant of basic sampling periods.

* Packets transferred from sensors to controllers or
controllers to actuators have the same length.

* Control actions of one control loop do not affect
other control loops.

* Sampling periods of each loop are adjusted as
multiples of the smallest sampling period ðT1Þ in the
order 2 (e.g. T1; 2	 T1; 4	 T1; 8	 T1;yÞ and
should not exceed the MADB in the corresponding
loop.

* Controller computational delay can be absorbed into
either tca or tsc (Walsh & Hong Ye, 2001).

The fifth assumption is introduced to simplify the
algorithm. Under this assumption multiples of the
smallest sampling period can be used as the sampling
periods of loops and the least common multiple (LCM)
of sampling periods of all loops can be used as the
largest period.
The sixth assumption was used for absorbing

controller delay time to node data transmission time
without loss of generality.
Now, let us calculate time needed for a basic sampling

period. Utilization of messages in a basic sampling
period denoted by UN can be represented as

UN ¼
TN

T1
: ð13Þ

To guarantee the minimum utilization for the messages,
which is denoted by Um

N ; the following inequality

Um
NpUN ð14Þ

should be satisfied. Using Eq. (13), the above equation is
converted to

Um
N T1pTN : ð15Þ

This period for messages ðTN Þ includes the overhead
time ðTM

ON
and TP

ON
Þ:

To transmit all sporadic data which arrived during the
previous cycle, the following condition

NM
S

#TM
S pTS ð16Þ

should be satisfied, where #TM
S ¼ TM

S þ TOS
; TM

S is the
maximum value of data transmission time of sporadic
data in the basic sampling period. This means that
NM

S
#TM

S is the maximum value of TS in the basic
sampling period during which all the sporadic data are
transmitted.
A basic sampling period consists of sampling delay,

transmission time of periodic data, transmission time of
sporadic data, and transmission time of messages.

Considering one specific basic sampling period, it can
be written as

T1 ¼ L
j
Si
þ TP þ TS þ TN þ Tx

O þ TCD; ð17Þ

where TCD denotes controller delay time, UL denotes a
set of loops whose all nodes are included in the
considered basic sampling period, Un

L denotes a set of
loops whose all nodes are not included in the considered
basic sampling period but some of the nodes in those
loops are partly in the considered basic sampling period,
and Un

S denotes a set of sensors which are in Un
L: L

j
Si
is

the largest required time to start transmitting sensor
data, which can be shortened in network protocols using
adequate scheduling method in the basic sampling
period. Let NP be the number of sensor and actuator
data packets for periodic data in UL; Un

S ; and Un
L: Then

NP is given by

NP ¼ Nb
S þ Nb

A; ð18Þ

where Nb
A denotes the number of actuators in UL and Nb

S

denotes the number of sensors in both UL and Un
S : Let

TP ¼
X
jAUL

XNj

S

i¼1

ðTj
Si
þ TOP

Þ þ
XNj

A

i¼1

ðTj
Ci
þ TOP

Þ

0
@

1
A

þ
X

jAUn

L
;iAUn

S

ðTj
Si
þ TOP

Þ; ð19Þ

then the basic sampling period is bounded as the
following equation:

L
j
Si
þ TP þ NM

S
#TM

S þ Um
N T1 þ Tx

OpT1: ð20Þ

The above equation can be changed to

TPp/ð1� Um
N ÞT1 � NM

S
#TM

S � Tx
O � L

j
Si
S; ð21Þ

where

/xS ¼
x for x > 0;

0 for xp0:

(

Note that the NCS cannot be scheduled if TP is less than
or equal to zero. In this case, other high-speed network
protocols should be selected or the number of nodes
should be reduced. If data transmission times of sensors
are equal as MS and data transmission times of
controllers are equal as MC ; then using Eq. (19), the
above equation becomes

Nb
SðMS þ TOP

Þ þ Nb
AðMC þ TOP

Þ

p/ð1� Um
N ÞT1 � NM

S
#TM

S � Tx
O � L

j
Si
S: ð22Þ

The left-hand side is the period for the periodic data
ðTPÞ and is bounded by the right-hand side.
Now consider the schedulability. If data transmission

times of sensors and controllers are equal as M ; then
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Eq. (22) becomes

NPp
/ð1� Um

N ÞT1 � NM
S

#TM
S � Tx

O � L
j
Si
S

M þ TOP

$ %
; ð23Þ

where IZm is the largest integer smaller than or equal to
the value Z: Let the right part of Eq. (23) be NM

P :
Let the largest sampling period in the NCS be NET1

and the ith basic sampling period in the largest sampling
period be Ti

B: Let the number of sensor and actuator
data packets for periodic data during NET1 be NT

P ; and
then it can be calculated as

NT
P ¼

XP

j¼1

QðNjÞNj ; ð24Þ

where QðNjÞ ¼ NET1=Tj for j ¼ 1;y;P: Since Tj for
j ¼ 1;y;P are adjusted as multiples of T1 in the order
2, QðNjÞ for j ¼ 1;y;P have integer values. The
schedulability can be checked by comparing NT

P with
NM

P NE : The largest sampling period in the NCS depends
on the largest MADB ðTP

DÞ: The sampling period
decision algorithm based on the bisection method can
decide the basic sampling period.

(1) Set the MADB of each control loop using
Theorems 1 or 2.

(2) Reorder control loops according to the MADBs
such that the smaller the MADB of a loop is, the
lower its loop number is.

(3) Compute NT
P using Eq. (24) and the results of the

above step.
(4) Let T1 ¼ T1D; TL ¼ 0; and TU ¼ T1; k ¼ 0:
(5) Choose Tj such as TjpT

j
D and Tj ¼ maxð2kT1Þ for

k ¼ 0; 1; 2;y :
(6) Compute NM

P using Eq. (23).
(7) If JNT

P=NEn is equal to NM
P or ðNM

P � JNT
P=NEnÞ

is within in the given bound, then T
j
B ¼ Tj for j ¼

1;y;P and go to the next step,
else if JNT

P=NEn is less than NM
P ; then TU ¼ T1;

take the basic sampling period ðT1Þ as ðTL þ
TU Þ=2; k þþ; and go to step 5,
else if JNT

P=NEn is greater than NM
P and k ¼ 0; then

terminate the algorithm (the scheduling is failed),
else if JNT

P=NEn is greater than NM
P and ka0; then

TU ¼ T1; take the basic sampling period ðT1Þ as
ðTL þ TU Þ=2; k þþ; and go to step 5 (JZn is the
smallest integer larger than or equal to the value Z).

(8) For each basic sampling period, T
j
B ðj ¼ 1;y;NEÞ;

allocate the bandwidth for sensor nodes and
actuator nodes using the following bandwidth
scheduling algorithm.

In Figs. 5 and 6, the flow chart of determination
sampling period algorithm is described.
Using the bandwidth-scheduling algorithm, data

packets can be allocated as follows. First, sensor data

packets in loop 1 are transmitted to the corresponding
controller through the network medium. When all
sensor data packets in loop 1 are transmitted, computa-
tions of control values in the controller of loop 1 are
started. This is the controller delay time in loop 1.
During this controller delay, sensor data packets in next
loop (loop 2) are transmitted using the network
medium. So the controller delay is overlapped with
transmission time of sensor data in loop 2. After the
controller delay time, a controller of loop 1 transmits its
data to actuators. After transmission of the controller,
data packets of other nodes are scheduled in the same
method as above during the specified period for periodic
data. If the period for periodic data in the basic
sampling period is ended, data packets for sporadic
data are scheduled. If time for messages is left after
transmissions of all sporadic data, then data packets for
messages are scheduled. Before the basic sampling
period is ended, an interval for synchronization could
exist according to applications. If there are unallocated
nodes in other loops after the first basic sampling
period, the unallocated nodes in other loops are
scheduled in the next basic sampling period in the same
method as above. The smallest period, which contains
the period for periodic, sporadic data, and messages is
less than or equal to the MADB, is selected as a
minimum sampling period of loop 1 according to the
sampling period decision algorithm.
If the bandwidth being able to transmit all data

packets in all MADBs of loops cannot be allocated, then
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Fig. 5. Flow chart of scheduling algorithm.
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other high-speed network protocols should be selected
or the number of nodes should be reduced. These two
algorithms are presented as the scheduling method in
this paper.

Set %Nh
S ¼ Nh

S; %Nh
A ¼ Nh

A for 1phpP; and
%Nh

S ¼ %Nh
A ¼ 0 for h > P;

for l ¼ 1 to l ¼ NE do,
set SN ¼ NM

P ;
set i ¼ j ¼ 1;
read the sensor values in loop i;
SN ¼ SN � %Ni

S; %Ni
S ¼ 0; and i þþ;

repeat
while ð %Ni

S ¼¼ 0 and ipPÞ;
i þþ;

end of while,
while ð %N j

A ¼¼ 0 and jpPÞ;
i þþ;

end of while,
if SNXð %N j

A þ %Ni
SÞ;

read all sensor values in the ith
loop,
write all actuator values in the j-th

loop,
SN ¼ SN � %Ni

S � %N
j

A; %Ni
S ¼ %N

j
A ¼

0; i þþ; j þþ;
else if %N

j
AoSNoð %N j

A þ %Ni
SÞ;

if joi;
SN ¼ SN � %N

j
A;

read SN sensor values in the
ith loop,
write all actuator values in the

jth loop,
%Ni

S ¼ %Ni
S � SN ; SN ¼ %N

j
A ¼

0; j þþ;
else,
read minðSN ; %Ni

SÞ sensor
values in the ith loop,

%Ni
S ¼ / %Ni

S � SNS; SN ¼
/SN � %Ni

SS;
if %Ni

S ¼ 0; then i þþ;
endif,

else if SNp %N
j

A and SNX %Ni
S;

read all sensor values in the ith
loop,

SN ¼ SN � %Ni
S; %Ni

S ¼ 0; i þþ;
write SN actuator values in the

jth loop,
%N

j
A ¼ %N

j
A � SN ; SN ¼ 0;

else if SNp %N
j

A and SNo %Ni
S;

if ði � jÞo2;
read SN sensor values in the

ith loop,
%Ni

S ¼ %Ni
S � SN ; SN ¼ 0;

else,
write SN actuator values in

the jth loop,
%N

j
A ¼ %N

j
A � SN ; SN ¼ 0;

endif,
endif,

until ðSN ¼ 0 or j > PÞ;
m ¼ 1;
while (ððJl�T1

Tm n� Il�T1
Tm mÞ ¼¼ 0Þ and

ðmpPÞ),
%Nm

S ¼ Nm
S ; %Nm

A ¼ Nm
A ; m þþ;

end of while,
end of for loop.

Let us consider some points in applications of the
scheduling method of the NCS in the case of token
control networks. The worst overhead should be
reserved for the case when the token has been passed
over to the next station just before a transmission
request is made. In token control, overhead time
occupies a large part of the whole period and
synchronization are difficult to estimate. The overhead
time can be varied according to the order in which the
token is passed. If the order of passing the token is not
well adjusted, a node may have to wait while the token is
passed over all the other nodes. Because an address of
each node is related to the order in which the token is
passed, an address of each node has to be adjusted. This
can be done using the previous scheduling algorithm for
the NCS.
Now consider the application of the scheduling

method in case of the polling control network such as
field instrumentation protocol (FIP). As there is no need
to wait for the token, the data or messages are
transmitted after the sensor delay time. Tx

O is needed
only for synchronizations. Hence if the synchronization
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Fig. 6. Flow Chart of bandwidth allocation algorithm.
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period is not considered, Tx
O can be zero. However, in

polling control such as FIP, considerable overhead time
ðTOS

Þ is required for sporadic data, since two or more
transfers of data packets such as the sporadic data
request frame and its corresponding frame from the bus
arbitrator are required. The rest of the procedure is
similar to the case of token control network.

4. Simulation results

4.1. Analysis of an MADB in a control loop

As an analysis of the MADB, the following state
space of the plant (Branicky et al., 2000; Wei Zhang
et al., 2001) is considered.

’xðtÞ ¼ AcxðtÞ þ BcuðtÞ;

yðtÞ ¼ CcxðtÞ; ð25Þ

where

Ac ¼
0 1

0 �0:1

" #
; Bc ¼

0

0:1

" #
and Cc ¼ ½1 0�:

The MADB is obtained as 53:8 ms from Lemma 1 (Park
et al., 2002) and 26:3	 103 ms from Theorem 1.
The MADBs were obtained from methods in Bra-

nicky et al. (2000) and Walsh et al. (1999) are 0.27 and
0:45 ms; respectively. In Wei Zhang et al. (2001), the
MADB was obtained as 1:7	 103 ms by stability region
technique. These results are summarized in Table 1.

4.2. Examples of NCS model

As an example for verification of the proposed
method, a plant with six DC motors is considered. Each
motor has an armature position controller with two
sensors and one actuator, which are linked via the
network. This configuration of six motors can be
assumed to be a part of a six-axis robot. If the armature
inductance ðLaÞ and viscous frictional coefficient ðBmÞ
are negligible, the motor dynamics can be modelled by

’xp ¼Fpxp þ Gpup

¼
�KiKb=RaJ 0

1 0

" #
xp þ

Ki=RaJ

0

" #
up; ð26Þ

yp ¼ xp; ð27Þ

where xp ¼ ½o y�T; up is applied voltage ðV Þ; and o and
y are, respectively, the rotor angular velocity (rad/s) and

displacement (rad). Ra; Ki; Kb; and J represent, respec-
tively, the armature resistance, torque constant, back
emf constant, and inertia of rotor and load. If a constant
gain ðKÞ is used as a state feedback controller, system (5)
is changed to

’xpðtÞ ¼ FpxpðtÞ þ Gp *Kxpðt � tÞ ð28Þ

as a single control loop in the NCS, where t ¼ *tc þ
*tsc þ *tca:
For the simulations, the motor in each loop has

nominal values such that Ra ðOÞ; Ki ¼ 10 ðoz in AÞ;
Kb ¼ 0:075 (V/rad/s), and J ¼ 0:006 ðoz in sec2Þ: The
tested motors in each loops have the same nominal
values as the previous one except Ra: Other five motors
have the value of Ra ¼ 10 ðOÞ; Ra ¼ 13 ðOÞ; Ra ¼
14 ðOÞ; Ra ¼ 19 ðOÞ; Ra ¼ 21 ðOÞ and Ra ¼ 25 ðOÞ;
respectively.
Using Lemma 1 (Park et al., 2002) and the given

parameters of the motors, the MADBs are calculated as
1.4, 2.6, 3.1, 6.1, 7.5 and 10 ms in Table 2. Using Lemma
3 (Park et al., 2002) and the given parameters of the
motors, the MADBs are calculated as 0.16, 0.21, 0.22,
0.30, 0.33 and 0:39 ms: Using Theorem 1, the MADBs
are calculated as 1:812	 103; 1:802	 103; 1:799	 103;
1:785	 103; 1:780	 103; and 1:771	 103 ms: Therefore
the final MADB is obtained as 1:771	 103 ms by
Theorem 1.

4.3. Application of a scheduling method using MADB

For the test of a scheduling method using MADBs,
three motors have the value of Ra ¼ 14; 19; and 21 O;
respectively. Using Lemma 1 from Park et al. (2002) and
the given parameters of the motors, the MADBs are
calculated as 3.1, 6.1, and 7:5 ms: Using Theorem 1, the
MADBs are calculated as 1:799	 103; 1:785	 103 and
1:780	 103 ms; respectively.
From now, the MADBs of each loop can be set as 3,

6, and 7 ms for convenience of calculations. It is
assumed that data for the sensor and the actuator have
4 bytes:
Using the notation in the nomenclature, the follow-

ings are given:

N
j
C ¼ N

j
A ¼ 1 for j ¼ 1; 2; 3;

N
j
S ¼ 2 for j ¼ 1; 2; 3;

Nj ¼ 3 for j ¼ 1; 2; 3;
Nn ¼ 1; P ¼ 3;
N ¼

PP
j¼1ðN

j
C þ N

j
SÞ þ Nn ¼ 10;

L
j
Si
¼ 0:1 ms for i ¼ 1; 2; j ¼ 1; 2; 3;
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Table 1

Simulation results of MADB (ms) by model (4.1)

Theorem 1 In Wei Zhang et al. (2001) In Park et al. (2002) In Branicky et al. (2000)

26:3	 103 1:7	 103 53.8 (Lemma 1) 17.5 (Lemma 3) 0.45
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T1D ¼ 3 ms; T2D ¼ 6 ms; T3D ¼ 7 ms;
NM

S ¼ 2;
Um

N ¼ 0:16;

where Nn is total number of extra nodes which do not
participate in control loops in the NCS. L

j
Si
is the ith

sensor delay in the jth loop.
Because actuator nodes are assumed not to send any

data in normal operations, the transmission of all
actuator nodes are not considered. The transmission
speeds are different according to the given network
protocols, but in this example the transmission speed is
assumed to be 1 MBps; regardless of the given net-
work protocols, for an equal comparison between the
polling control and the token control network. The data
length of sensors and controllers is assumed to be four
bytes and that of sporadic data is assumed to be two
bytes. For simplicity of an analysis, it is assumed
that buffering delays and packetizing delays are
neglected.
First, let us consider PROFIBUS. If the uni-

versal asynchronous receiver and transmitter (UART)
character which consists of 11 bits=byte is used
in the token control, then parameters can be given as
follows:

T
j
Si
¼ T

j
C1

¼ M ¼ 4 bytes	 11 bits=byte	 1 ms=bit ¼
44 ms; for i ¼ 1; 2; j ¼ 1; 2; 3:

TM
S ¼ 2 bytes	 11 bits=byte	 1 ms=bit ¼ 22 ms:
Message overhead for periodic and sporadic data:

TM
OP

¼ TM
OS

¼ 9 bytes	 11 bits=byte	 1 ms=bit ¼ 99 ms:
Protocol overhead for periodic data can be bounded

by one token rotation time and given by
TP

OP
¼ 10ðNÞ 	 3 bytes ðtokenÞ 	 11 bits=byte	

1 ms=bit ¼ 330 ms:
Protocol overhead for sporadic data is calculated as
TP

OS
¼ 10ðNÞ 	 3 bytes ðtokenÞ 	 11 bits=byte	 1 ms=

bit ¼ 330 ms;
TS ¼ 2ðNM

S Þ 	 ðTM
S þ TM

OS
þ TP

OS
Þ ¼ 902 ms;

Tx
O ¼ 330 ms; TN ¼ 0:16	 3 ms ¼ 0:48 ms:
Next, let us consider FIP. Parameters can be given as

follows:

T
j
Si
¼ T

j
C1

¼ M ¼ 4 bytes	 8 bits=byte	 1 ms=bit ¼
32 ms; for i ¼ 1; 2; j ¼ 1; 2; 3;

TM
OP

¼ 45 bits ðRP DATÞ 	 1 ms=bit ¼ 45 ms;

TP
OP

¼ 61 bits ðID DATÞ 	 1 ms=bit ¼ 60 ms;
TM

S ¼ 2 bytes	 8 bits=byte	 1 ms=bit ¼ 16 ms;
TM

OS
¼ 45 bits ðRP DATÞ 	 1 ms=bit ¼ 45 ms;

TP
OS

¼ f61ðID RQÞþð45þ16ÞðRP RQÞþ61ðID DATÞg
bits	 1 ms=bit ¼ 183 ms;

TS ¼ 2ðNM
S Þ 	 ðTM

S þ TM
OS

þ TP
OS
Þ ¼ 488 ms;

TN ¼ 0:16	 3 ¼ 0:48 ms:

Applying steps 1–6 of the sampling period decision
algorithm to the example, NT

P is calculated as 12
and NE is 2, while NM

P is 2 in the token control net-
work and 14 in the polling control network. Hence 2
nodes and 14 nodes can be scheduled in the token
control and the polling control network, respec-
tively, within a basic sampling period. From this
calculation, it can be shown that all nodes cannot be
scheduled using token control, but can be, using polling
control. Then, following the repetition steps of the
sampling period decision algorithm, the sampling period
can be reduced in the case of the polling control
network.
As a final step of the scheduling method for an NCS,

bandwidth is allocated using the bandwidth scheduling
algorithm. In the token control case, the end time of the
transmission in loop 3 exceeds 2	 T1D which is the
sampling period of loop 3. Therefore, scheduling is
impossible in this case.
In the polling control case, as the overhead time in

each node is bounded by a constant value, calculation
results in the last section are similar to the real values.
An MADB can be determined from 1.77 to 1:81 s by

Theorem 1 or 2. Hence, the basic sampling period
can be reduced by about 1:4 ms in this case. Applying
steps 1–6 of the sampling period decision algorithm
to the example, NT

P is calculated as 804 and NE is 1214;
while NM

P is 8498 in the polling control network.
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Table 2

Simulation results of MADB (ms) in the each loop

Loop Ra ðOÞ By Lemma 1
(Park et al., 2002)

By Lemma 3

(Park et al., 2002)

By Theorem 1

(or 2)

Loop 1 10 1.4 0.16 1:812	 103

Loop 2 13 2.6 0.21 1:802	 103

Loop 3 14 3.1 0.22 1:799	 103

Loop 4 19 6.1 0.30 1:785	 103

Loop 5 21 7.5 0.33 1:780	 103

Loop 6 25 10 0.39 1:771	 103

Fig. 7. Bandwidth allocation result using polling control. (S
j
i and C

j
i

means sensor data and control data of the ith node in the jth loop

respectively.)
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Results from calculations are matched to those
of the allocations. If 1:77 s MADB is selected, the
bandwidth can be allocated as shown in Fig. 7. In
Fig. 7, S

j
i and C

j
i means sensor data and control data of

the ith node in the jth loop respectively.
From these results, it can be shown that the large-

scaled NCSs with many nodes be scheduled using token
control or polling control.

The simulation results in case of polling control case
are shown in Fig. 8. In Fig. 8, we show the out-
puts ðo; yÞ of the motor position control system in
which a controller, sensors, and an actuator are
connected directly or connected by a network. The
behavior of the outputs in the NCS is similar to that in
the directly connected systems. The simulation results of
the step response of networked control system in Fig. 9.
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Fig. 8. Outputs of motor 1 position control ðRa ¼ 10 ðOÞ; %t ¼ 1:812	 103 msÞ:
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Fig. 9. Step response of networked control of loop 1.
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5. Conclusions

In this paper, the MADBs are obtained for the
stability of the NCS using LMI formulation, and are
used as the basic parameter for a scheduling method for
the NCS. Further, the scheduling method for the NCS
can adjust the sampling period as small as possible,
allocate the bandwidth of the network for three types of
data, and exchange the transmission orders of data for
sensors and actuators. In addition to those, the
presented method can guarantee real-time transmission
of sporadic and periodic data, and minimum utilization
for nonreal-time messages.
In an NCS, the presented method is useful, as it

provides a solution to determine the sampling periods of
each control loop and it can indicate whether the pre-
determined network protocol is possible for the given
control system or not. An example is presented to show
the usefulness of the proposed method for the NCS.
As the sampling periods used in the proposed method

are multiples each other in the order 2, the simplified
algorithm based on multiples of the smallest sampling
period is necessary to be studied. As future works, the
jitters will be investigated for the analysis of NCSs.
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Appendix A

Proof of Theorem 1. Choose a Lyapunov functional as
follows:

V ðxðt � aÞ; aA½0; %t�Þ ¼ V1 þ V2 þ V3; ð29Þ

where

V19xTðtÞPxðtÞ; ð30Þ

V29
XN

i¼1

Z 0

�ti

Z t

tþb
’xTðaÞZi ’xðaÞ da db

� �
; ð31Þ

V39
XN

i¼1

Z t

t�ti

xTðaÞQxðaÞ da
� �

: ð32Þ

Since xðt�tiÞ ¼ xðtÞ�
R t

t�ti
’xðsÞ ds¼ xðtÞ�

R t

t�ti
½FxðsÞþPN

i¼1fFixðs� tiÞg� ds; the system (6) can be written as
(Hale & Lunel, 1993)

’xðtÞ ¼ F þ
XN

i¼1

Fi

 !
xðtÞ �

XN

i¼1

Fi

Z t

t�ti

’xðaÞ da
� �

and thus the derivative of V1 satisfies the relation ’V1 ¼
2xTðtÞ½PðF þ

PN
i¼1 FiÞ�xðtÞ � 2

PN
i¼1fxTðtÞPFi

R t

t�ti
’xðaÞ

dag: Defining að�Þ; bð�Þ; and N in Eq. (8) as
aðaÞ9xðtÞ; bðaÞ9 ’xðaÞ; and N9PFi for all aA½t � ti; t�

and applying Lemma 1 will supply
Xi Yi

YT
i Zi

� �
X0; i ¼

1;y;N; and

’V1p2xTðtÞ P F þ
XN

i¼1

Fi

 !" #
xðtÞ

þ
XN

i¼1

tix
TðtÞXixðtÞ

þ 2
XN

i¼1

xTðtÞðYi � PFiÞ
Z t

t�ti

’xðaÞ da
� �

þ
XN

i¼1

Z t

t�ti

’xTðaÞZi ’xðaÞ da
� �

pxTðtÞ

	 FTP þ PF þ
XN

i¼1

f%tXi þ Yi þ YT
i g

" #
xðtÞ

þ 2
XN

i¼1

fxTðtÞðPFi � YiÞxðt � tiÞg

þ
XN

i¼1

Z t

t�ti

’xTðaÞZi ’xðaÞ da
� �

:

Since ’V2 and ’V3 yield the relation

’V2 ¼
XN

i¼1

ti FxðtÞ þ
XN

i¼1

fFixðt � tiÞg

" #T
i

8<
:

	 FxðtÞ þ
XN

i¼1

fFixðt � tiÞg

" #

�
XN

i¼1

Z t

t�t
’xTðaÞZ ’xðaÞ da

� �
;

’V3 ¼
XN

i¼1

fxTðtÞQixðtÞ � xTðt � tiÞQixðt � tiÞg;

we have the derivative of V as follows:

’V ¼ ’V1 þ ’V2 þ ’V3p %xT
X11 X12

XT
12 X22

" #
%x;

where

%x9½xTðtÞ xTðt � t1Þ ? xTðt � tNÞ�T;

X119FTP þ PF

þ
XN

i¼1

fYi þ YT
i þ %tXi þ Qi þ %tFTZiFg;
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X129
F1 � Y1 þ

P3
i¼1 %tFTZiF1

?PFN � YN þ
P3

i¼1 %tFTZiFN

" #
;

X229� diagfQ1;y;QNg

þ

PN
i¼1 %tFT1 ZiF1 ?

PN
i¼1 %tFT1 ZiFN

^ & ^PN
i¼1 %tFTNZiF1 ?

PN
i¼1 %tFTNZiFN

2
64

3
75:

Therefore, if

X11 X12

XT
12 X22

" #
o0; ð33Þ

system (6) is asymptotically stable according to the
Lyapunov–Krasovskii stability theorem (Hale & Lunel,
1993). Eq. (33) can be rewritten into

Y11 Y12

YT
12 Y22

" #
þFTZG�1ZFo0; ð34Þ

where

Y119FTP þ PF

þ
XN

i¼1

fYi þ YT
i þ %tXi þ Qig;

Y129½PF1 � Y1 ? PFN � YN �;

Y229� diagfQ1;y;QNg;

By the Schur complement (Boyd, Ghaouli, Feron, &
Balakrishnan, 1994), Eq. (34) is equivalent to the first
inequality in Eq. (9). This completes the proof. &
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