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A Constrained Receding Horizon Estimator with FIR Structures
Pyung Soo Kim and Young Sam Lee

Abstract: This paper concerns with a receding horizon estimator (RHE) for discrete-time linear systems subject to constraints on theestimate. In solving the optimization for every horizons, the past all measurement data outside the horizon is discarded and thus thearrival cost is not considered. The RHE in the current work is a �nite impulse response (FIR) structure which has some good inherentproperties. The proposed RHE can be represented in the simple matrix form for the unconstrained case. Various numerical examplesdemonstrate how including constraints in the RHE can improve estimation performance. Especially, in the application to the unknowninput estimation, it will be shown how the FIR structure in the RHE can improve the estimation speed.
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I. IntroductionThe Kalman �lter has been an important tool for the last thirtyyears, not only for control system design, but also for manyother �elds of engineering and applied science [1]. Often ad-ditional insight about the system is available in the form of in-equality constraints. However, with the addition of the inequal-ity constraints, general recursive solutions such as the Kalman�lter are unavailable.Although there exists a vase literature addressing estimation,relatively little work has been carried out for systems in whichthe estimated variables must satisfy a priori constraints. If thedata are processed in batch fashion, inequality constraints canbe easily be incorporated within least squares estimation usinga quadratic programming. However, the problem size growswith time as more data becomes available. Thus, its on-lineapplication might be limited. To make the estimation problemtractable, a receding or a moving horizon formulation has beenproposed where the least squares optimization is performedover a �xed length horizon to bound the size of the quadraticprogram [2] [3]. The obtained estimator will be called the re-ceding horizon estimator (RHE). In the existing RHE [2] [3],to summarize compactly the effect of the past all measurementdata outside the horizon, the arrival cost has been consideredin the optimization. That is, the past data outside the horizonaffects the optimization in the current horizon. Therefore, al-though this RHE can incorporate inequality constraints, it stillhas an in�nite impulse response (IIR) structure. It has been ageneral rule of thumb that the IIR structure �lter such as theKalman �lter is often sensitive against temporarily uncertainmodeling errors or numerical errors [4]-[6].In this paper, an alternative RHE will be investigated fordiscrete-time linear systems with inequality constraints. Thisestimator will have a �nite impulse response (FIR) structurewhich utilizes only the �nite measurement data on the mostrecent horizon. The FIR structure in �lters has been adopteddue to its inherent properties such as a bounded input/bounded
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output (BIBO) stability, robustness for temporary modeling un-certainties and numerical errors [4]-[6]. To be an FIR structure,in solving the optimization, only the �nite measurement data onthe horizon is utilized while the past all measurement data out-side the horizon is discarded. That is, the arrival cost term is notconsidered by taking the covariance matrix of the horizon initialstate as in�nity. This means that the horizon initial state is as-sumed to be unknown when solving the optimization for everyhorizons. It is shown that the proposed RHE can be representedin the simple matrix form for the unconstrained case. Variousnumerical examples demonstrate how including constraints inthe RHE can improve estimation performance. Especially, inthe application to the unknown input estimation on a continu-ous stirred tank reactor (CSTR) model, it will be shown howthe FIR structure in the RHE can improve the tracking speed.
II. Problem statementsConsider a linear discrete time-invariant state-space model:

xk+1 = Axk + Gwk, yk = Cxk + vk (1)
where xk ∈ <n is the state vector and yk ∈ <q is the mea-sured output vector, respectively. The initial state xk0 is a ran-dom variable with a mean x̄k0 and a covariance Πk0 . The noiseterms wk ∈ <p and vk ∈ <q are random variables with zeromean and covariances Q and R respectively, and mutually un-correlated. The random variable wk typically models unmea-sured disturbances and model inaccuracies, while the randomvariable vk is measurement noise. There two variables are un-correlated with xk0 .Although forming an accurate probabilistic model for the un-known variables such as states xk and disturbances wk is dif�-cult, an engineer will usually have knowledge about the rangeof values that they can assume. This knowledge can be formedas inequality consraints as follows:

wk ∈ W
4
= {w : Dw ≤ d},

xk ∈ X
4
= {x : Hx ≤ h} (2)

where D ∈ <nw×n, H ∈ <nx×n, d ∈ <nw and h ∈ <nx .The capability to incorporate above constraints on the estimatedvariables have lead to better estimates [2] [3]. When optimiza-tion software such as quadratic programming or nonlinear pro-gramming is used to solve the least squares problem, inequality
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constraints (2) can be placed on the unknown variables. This isuseful form an engineering viewpoint since the prior knowledgeof the process is often in the form of inequalities. For instance.variables such as temperature, pressure, �ow rates, concentra-tions, etc. must be nonnegative and cannot go above some upperbound. In addition, the rate-of-change of these variables is alsobounded by mass and energy balance considerations.Although the quadratic programming can incorporate in-equality constraints of (2), its on-line application is limitedsince the size of the problem grows as more data become avail-able. Thus, for a �xed dimension quadratic program, a recedingor moving horizon formulation can be a strategy [2] [3]. Thatis, for the current time k, the optimization problem on the in-terval [k0, k] with varied horizon length k − k0 is reformulatedon the most recent horizon [k−N, k] with �xed horizon length
N . For compactness, kN

4
= k − N shall be written hereafter.In the current paper, the estimator with a receding or movinghorizon strategy will be called the receding horizon estimator(RHE). However, in the existing RHE [2] [3], due to the arrivalcost term which compactly summarizes the effect of the past allmeasurement data outside the horizon, the RHE is an in�niteimpulse response (IIR) structure which utilizes all of the avail-able measurement data. It has been a general rule of thumb thatthe IIR structure �lter such as the Kalman �lter is often sensi-tive against temporarily uncertain modeling errors or numericalerrors [4]-[6].

III. Constrained RHE with FIR structureIn this section, the RHE with an FIR structure will be investi-gated subject to constraints on the estimate. To be an FIR struc-ture, in solving the optimization on the current horizon [kN , k],only the �nite measurement data on the horizon is utilized whilethe past all measurement data outside the horizon is discarded.This means that the arrival cost term in [2] [3] will not be con-sidered in optimization to obtain the optimal state and distur-bance estimates.On the most recent horizon[kN , k], the system (1) will berepresented in a batch form that the �nite measurement datais expressed in terms of the state xk at the current time k asfollows:
Yk−1 = C̄Nxk + ḠNWk−1 + Vk−1

=
�
C̄N ḠN

� � xk

Wk−1

�
+ Vk−1 (3)

where Yk−1
4
= [yT

kN
· · · yT

k−1]
T , Wk−1

4
= [wT

kN
· · · wT

k−1]
T ,

Vk−1
4
= [vT

kN
· · · vT

k−1]
T and C̄N , ḠN are obtained from

C̄N
4
=

2
66664

CA−N

CA−N+1...
CA−1

3
77775 ,

Ḡ
4
= −

2
66664

CA−1G CA−2G · · · CA−NG

0 CA−1G · · · CA−N+1G... ... ... ...
0 0 · · · CA−1G

3
77775 .

On the horizon [kN , k] for the current time k, the recedinghorizon estimator (RHE) is obtained from the solution of the

following quadratic program
J∗N = min

xk|k−1,Wk−1
JN (xk|k−1, Wk−1)

subject to (1) and inequality constraints (2) where
JN (xk|k−1, Wk−1)

=

2
4 Yk−1 −

�
C̄N ḠN

� � xk|k−1

Wk−1

�

Wk−1

3
5

T

�
R̄N 0

0 Q̄N

�−1

2
4 Yk−1 −

�
C̄N ḠN

� � xk|k−1

Wk−1

�

Wk−1

3
5 (4)

with weighting matrices given by R̄N
4
= [diag(Q · · · Q)] and

Q̄N
4
= [diag(R · · · R)]. Then, on the most recent horizon

[kN , k], the optimal state and disturbance estimates are denotedat time k by x̂k|k−1 and Ŵk−1 given measurement data Yk−1.In particular, if
(x̂k|k−1, Ŵk−1) ∈ arg min

xkN
,Wk−1

JN (xkN , Wk−1),

then the RHE x̂k|k−1 denotes the solution to (4) at time k.The obtained RHE x̂k|k−1 has the FIR structure since onlythe �nite measurement data Yk−1 on the most recent horizon
[kN , k] is utilized. The FIR structure in �lters has known to bebuilt in a bounded input/bounded output (BIBO) stability and tobe robust against temporarily uncertain model parameters [4]-[6]. Therefore, the RHE with FIR structure might have aboveinherent properties of the FIR structure �lter. In the system fordetecting a signal with unknown time of occurrence, it is wellknown that increasing of measurements for a detection deci-sion will increase the time to detection, i.e., an increase in adelay from the time unknown signal �rst appears would be ap-propriate for quick detection of signals with unknown times ofoccurrence, which will be shown via a real application in thefollowing section.Note that the proposed RHE with FIR structure can be repre-sented in a simple matrix form when there are no constraints asfollows:

x̂k|k−1 =

�
C̄T

N R̄−1
N C̄N C̄T

N R̄−1
N ḠN

ḠT
N R̄−1

N C̄N ḠT
N R̄−1

N ḠN + Q̄−1
N

�−1

C̄T
N R̄−1

N Yk−1. (5)
which is obtained easily from the the minimization of (4).

IV. Numerical examples1. Simple example of inequality constraintsTo illustrate the validity of the constrained estimation, simplenumerical example is implemented on a following discrete-timelinear system:
xk+1 =

�
0.9962 0.1949

−0.1949 0.3815

�
xk +

�
0.03393

0.1949

�
wk,

yk =
�

1 −3
�
xk + vk

where vk is zero mean and normally distributed random vari-able with covariance 0.012, and wk = |zk| where zk is zero
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mean and normally distributed random variable with covariance
0.12. The initial state x0 is normally distributed with zero meanand covariance equal to the identity. The constrained estimationproblem is formulated withQ = 0.12, R = 0.012 andN = 10.To capture our knowledge of the random variable wk, the in-equality constraints wk ≥ 0 is enforced. Four estimators arecompared. The �rst is unconstrained RHE with IIR structure,which is the Kalman �lter [3]. The second is the constrainedRHE with IIR structure [3]. The third is the unconstrained RHEwith FIR structure, which is given by (5). Finally, fourth is theconstrained RHE with FIR structure, which is the main result ofthis paper. The result is shown in Fig. 1. As expected, the per-formance of two constrained RHEs are superior to other two un-constrained RHEs, since they possess more information regard-ing the random variable in the form of equality constraints. It isremarkable that the constrained RHE with FIR structure showssimilar performance to the constrained RHE with IIR structure,although the arrival cost is not considered in optimization.2. Application to unknown input estimationTo show the useful application of the constrained RHE withFIR structure, the problem of an unknown input estimation isconsidered. The unknown input estimation has been appliedto many engineering problems [7] [8]. It has been shown thatthe unknown input estimation using the FIR structure �lter canprovide quicker estimation than the approach using IIR �ltersuch as the Kalman �lter [8]. In this section, the applicationof the unknown input estimation demonstrates how includingconstraints in the RHE can improve estimation performance. Inaddition, it will be shown how the FIR structure in the RHE canimprove the tracking speed.The unknown input estimation using the constrained RHEwith FIR structure is performed for a continuous stirred tankreactor (CSTR). The unknown input vector with a random-walktype is treated as auxiliary state. Then, the CSTR system can beaugmented as the following fourth order system:
xk+1 =

2
664

0.9534 3.5868 −2.4413 0.0449

0.0015 0.6152 0.0354 0.0000

0 0 1.0000 0

0 0 0 1.0000

3
775xk

+

2
664
−0.0622 0 0

0.0010 0 0

0 0.0500

0 0 0.0500

3
775wk,

yk =

�
1 0 0 0

0 1 0 1

�
xk + vk (6)

with inequality constraints which should be enforced include:
−x2 ≤ 0.051, x2 ≤ (1− 0.051),

x3 ≤ 0, x4 ≤ 0, − x3 ≤ 0.5. (7)
In the augmented state xk = [x1 x2 x3 x4]

T , the original stateterm is [x1 x2]where x1 is the change in the reactor temperatureand x2 is the change in the mole fraction of original chemicalspecies, and the unknown input term is [x3 x4] where x3 corre-sponds to the clogging of the inlet pipe and x4 is related to theheat transfer �uid.Objective is to obtain the unknown input estimate [x̂3 x̂4]
T

as well as the state estimate [x̂1 x̂2]
T subject to (6) and the in-equality constraints (7). The �rst two express the requirement

Fig. 1. Comparison of four estimators.
that the mole fraction of original chemical species is in the in-terval [0, 1]. The next two constraints imply that the inlet �owrate and the temperature of heat transfer �uid can only decreasefrom their nominal values. The last constraint implies that thedecrease of the inlet �ow rate must be bounded.The �rst unknown input is a step type with 0.3 decrease at
k = 100 and the second one is also a step type with 0.5 de-grees at k = 200. Fig. 2 and 3 show estimates for the secondunknown input. Two unconstrained RHEs violate the negativityconstraint in some instances. However, two constrained RHEssatisfy the negativity constraints, since they possess more infor-mation regarding unknown inputs in the form of equality con-straints. It is remarkable that the RHEs with an FIR structureshown in Fig. 3 shows superior fast tracking performance toother two estimators with IIR structure shown in Fig. 2, whichindicates the �nite convergence time and the fast tracking abilitythe FIR structure �lters. Therefore, in the viewpoint of both sat-isfying constraints and fast tracking, the constrained RHE withFIR structure will be useful for the problem of the unknowninput estimation.

V. Concluding RemarksThis paper has concerned with an RHE with discrete-timelinear systems subject to constraints on the estimate. In solv-ing the optimization for every horizons, the measurement dataoutside the horizon is discarded and thus the arrival cost is notconsidered. The RHE is the FIR structure which has some goodinherent properties. The proposed RHE can be represented inthe simple matrix form for the unconstrained case. Via variousnumerical examples, it is shown how including constraints inthe RHE can improve estimation performance. Especially, it isshown how the FIR structure in the RHE can improve the esti-mation speed in the application to the unknown input estimationon the CSTR model.

Fig. 2. RHEs with IIR structure.
Fig. 3. RHEs with FIR structure.
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