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Real-Time Single Camera SLAM Using Fiducial Markers
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Abstract: In this paper, a real-time single camera simultaneous localization and mapping (SLAM), that uses artificial
landmarks is proposed. Proposed method uses the extended Kalman filter (EKF) to estimate robot pose and landmarks
position. The core of the approach is the online creation of a map of fiducial markers in the environment within a proba-
bilistic framework. Our key contributions include a development of measurement model of fiducial markers, solutions for
global registration of fiducial markers, and the development of calibration-free indoor localization method. We present a
detailed method to estimate the 3D location of fiducial markers from an image and how the robot is positioned. Simulation
and experimental results for a self-developed mobile robot are both presented.
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1. INTRODUCTION

The recent trends in visual SLAM has been towards
the use of natural landmarks. However, one of the most
critical limitation to the SLAM based on natural land-
marks is the data association problem. The data asso-
ciation is the issue of matching current observations with
previously obtained observations from a captured scene.
Several techniques have been applied to the data associa-
tion problem, such as the EKF based active region detec-
tion [1], nearest-neighbor method [2]. Nonetheless, the
natural-landmark-based SLAM methods are vulnerable
to moving objects located in a captured scene. Because
the moving object causes miss data association. This cru-
cial ability has been an obstacle of industrialization of
SLAM into indoor robots.
In contrast, artificial landmarks have been guarantee

better localization repeatability than natural landmarks
thanks to their distinguishablity. Therefore, many com-
mericial indoor positioning products have adopted artifi-
cial landmarks. However, the existing indoor localization
methods based on artificial landmarks have traditionally
relied on the location of landmarks measured before per-
forming localization task. Complicated calibration and
measurement process are involved to use these products.
The set up and calibration of such devices is not triv-
ial. Accuracy of location estimation is up to precision of
beacons location measurements. Moreover, this process
should be repeated when structure of the indoor changed.
To resolve these difficulties, we present the real-time

single camera SLAM using fiducial markers. To sum-
marize our complete localization algorithm, we take the
image stream from a single camera, online creation of
a map of fiducial markers in the environment within a
probabilistic framework and use these to EKF to estimate
robot’s pose.
This paper has two main contributions. First, exist-

ing researches related to indoor localization require the
location of landmarks in global coordinates to be stored
a priori in the system. However, the proposed method
does not require the location of landmarks to be stored a
priori. We simultaneously estimate the location of land-

mark in global coordinates and robot based on bayesian
probabilistic framework. Second, fiducial markers can be
printed on a paper and attatched to a planar surface.(e.g.,
walls, ceilings, floors). This suggests that landmarks
can be installed flexibly and randomly without any priori
knowledge. Compared with existing techniques which
use expensive laser range finders, the proposed method
requires a camera, papers and a desktop printer to build an
indoor localization system. Consequently, we can build
SLAM system in a cost-effective way.
The next section is devoted to a literature review and

comparison between existing approaches and proposed
approach. Section 3 covers the algorithm of landmarks
and the robot estimation. In section 3, measurement
model of fiducial markers and motion model of self-
developed mobile robot are presented. EKF solution of
proposed method is also described. In Section 4, both
simulation and experimental results are presented. The
real experiment was conducted at corridor environment
with self-developed mobile robot. Finally, conclusions
are presented in Section 5.

2. RELATEDWORK

Triangulation method has been applied to the land-
mark based localization research. The works of [3, 4]
have used triangulation approach. It is used to esti-
mate the robot’s position based on observed bearings and
ranges from sensor. The main disadvantage of triangu-
lation method is that the landmark’s location should be
known a prior to localization. However, landmarks will
typically be located in 3-D space, so it will be a hard work
to measure the all location of landmarks.
Product use triangulation method to estimate robot’s

position already exist [5-7]. The weaknesses of men-
tioned products are complicated calibration procedure.
[6] uses ultrasonic emitter/receiver to obtain distances
from each landmarks to receiver. The landmark has
power supply unit because it is ultrasonic emitter. Fur-
thermore, estimation accuracy is varying with tempera-
ture because the speed of sound is different in condition
of temperature. [5, 7] uses retro-reflective patches to po-
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Fig. 1: Example fiducial markers used in this paper

sitioning robot. The [7] is designed for a single room and
involves only a single landmark. Therefore it does not
need data association. The landmark of [5] is an encoded
patch for the data association. However, the calibration
and mapping procedure should be performed prior to op-
eration. SLAM with visual markers using monocular vi-
sion has not been proposed so far to the best of our knowl-
edge.

3. METHODS

3.1 Fiducial Marker as a Landmark

In this paper, we use fiducial markers as landmarks.
Fiducial markers are frequently used in augmented reality
researches to estimate the camera pose for overlaying of
virtual model to a captured video frame [8, 9]. But men-
tioned researches used fiducial markers in a single local
coordinate. For example, estimation space is 1-2 meter
wide and estimation process only involves about one to
four markers. However, the proposed method has over
6m estimation space and involves more than 15 mark-
ers. These markers are not attahced on a single desktop,
but distributed along the wall. Unlike augmented reality
implementation, proposed method can recover the posi-
tion of markers in the global frame from integration of
every single observation. The number of markers are
bounded by the 10 bits of identification code, which is
1024(=210). This paper considers basic fiducial markers
shown in Fig. 1 for the simplicity [9]. Fiducial mark-
ers consist of four vertices and an identification code at
the center of a marker. The identification code contains
10-bit binary number and CRC. The typical experiment
environment of the proposed method is illustrated in Fig.
8b.
Fiducial markers have good properties to extract mark-

ers from a complicated and mixed scene. First, its tone
and shape is easy to detect. The tone of fiducial mark-
ers is black and white, so it is easy to distinguish in the
binary image. Second, the vertices of fiducial markers
can be easily extracted from line crossings thanks to its
square shape. However, black and white fiducial mark-
ers are visually unpleasure. For the visual pleausre, var-
ious form of another type of fiducial markers exist. In
[10], the fiducial markers are optimized for visual plea-
sure with the aim to unobtrusively integrate them into
homes. In [11], the fiducial markers are invisible to hu-
man eyes to avoid undesirable visual effects using retro-
reflector paint. The mentioned fiducial markers can be
applied to the proposed method for the visual pleasure.
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Fig. 3: Image processing algorithm

3.2 Calculation of Position of Markers
The fiducial marker coordinates is shown in Fig. 2.

The position of a marker from camera center is computed
from transformation of coordinates between marker and
camera. We use Pi = [X ,Y ,Z ]T to denote vertices on
the marker in the global coordinates. If there exists four
points on a plane, we can assume that the 3D coordinates
of known four points are on the Z = 0 plane without lack
of generality. By abuse of notation, we still use Pi to
denote vertices on the marker, but Pi = [X ,Y ]T since
Z is always equal to 0.
When a fiducial marker is captured to a camera, the

four vertices of a marker are projected to the 2D image.
The parameters involved in this process are called intrin-
sic parameters. This parameters are obtained prior to
SLAM by applying camera calibration techniques [12].
Extrinsic parameters represent the camera pose relative
to marker coordinates that can be recovered from the ho-
mography between a marker and imaged vertices. Ho-
mography is a 2D to 2D linear transform between a
marker in the global coordinates and projected vertices
in the image coordinates. The marker vertices point de-
noted by Pi and its image pi is related by a homography
H:

sp̃ = HP̃ (1)

where

K =

⎡
⎣
su γ u0

0 sv v0

0 0 1

⎤
⎦ , H = K

⎡
⎣
r11 r21 t1
r12 r22 t2
r13 r23 t3

⎤
⎦ (2)



- 179 -

The K is a camera intrinsic matrix, with (u0, v0) the co-
ordinates of the principal point, su, sv the scale factors
in image u and v axes, and γ the parameter describing
the skew of the two image axes. The following equation
represent the relation between marker and image coordi-
nates.
⎡
⎢⎢⎢⎢⎢⎣

P̃T
1 0T −u1P̃T

1

0T P̃T
1 −v1P̃T

1
...

...
...

P̃T
4 0T −u4P̃T

4

0T P̃T
4 −v4P̃T

4

⎤
⎥⎥⎥⎥⎥⎦

b = Ab = 0 (3)

where P̃ = [X,Y, 1]T , b = [h̄T
1 , h̄

T
2 , h̄

T
3 ]T, (u, v) are

image coordinates. And h̄T
i , the ith row of H.

The matrixA can be initially solved by singular value
decomposition(SVD). Using SVD, A can be decom-
posed as A = UDVT with D diagonal with positive
diagonal entries, arranged in descending order down the
diagonal. The last column of V is the solution of the pa-
rameter set b in a least square manner. In most cases,
the condition number of A is poor, because of some el-
ements are constant, some are in pixels, some are in mm
unit. Much better results can be obtained by applying
pixel coordinates normalization, described in [13], prior
to computation. The Algorithm 1 describes the overall
process of marker extraction and pose estimation.

Algorithm 1 Calcuation of Position of Marker (Fig. 3)

1: Thresholding of the image with threshold
2: Get connected components from the thresholded im-

age
3: Get contours from the connected components image
4: Extract four vertices from the contour image
5: Solve the linear equation (3) applying SVD with

known marker geometry and extracted image coor-
dinates.

6: Set the cost function J to be minimized in order to
determine b for over-determined solutions [13].

7: while cost function J above threshold do
8: do Levenberg-Marquardt iteration
9: end while

3.3 Robot and Sensor model
3.3.1 Notations
In this paper, we attached three additional letters

enclosded in brackets and denoting, by order, the di-
rections of the three coordinates axes. For example,
OW{NWU } would be a world frame with the X-axis
pointing ’N ’orthwards, the Y -axis pointing ’W ’estwards
and the Z-axis pointing ’U ’pwards (See Fig. 4). In
the same way, OR{FLU } would be a ’F ’ront, ’L’eft,
’U ’pper by order. This notation is developed in the thesis
by Ortega [14]. This can be very helpful when reasoning
about the frame axes order.

3.3.2 Motion model of self-developed robot
The developed robot is shown in Fig. 8a. We applied

proposed method to this robot with motion equation de-

scribed in this section. We assumes the robot motion
model is nonlinear time-varying equation denoted by

xk+1 = fv(xk,uk, μk) (4)

where f(·) is nonlinear function, μk is a control noise
vector which has Qk as a covariance. Control vector is
uk = [Vk,Ωk]T which means velocity and steering an-
gle respectively. The process model of used robot is de-
scribed by
⎡
⎣
ẋv

ẏv

θ̇

⎤
⎦ =

⎡
⎣

V cos(θ)
V sin(θ)

V tan(Ω)/L

⎤
⎦ (5)

where L is the distance between wheel axles as shown in
Fig. 4. To simplify the equation in the update stage, the
kinematic model of the vehicle is designed to represent
the trajectory of the center of the camera as follows :
�
xc

yc

�
=

�
xv + a cos θ − b sin θ
yv + a sin θ + b cos θ

�
. (6)

The derivation of this equation is given by
�
ẋc

ẏc

�
=

�
ẋv − (a sin θ + b cos θ)θ̇
ẏv + (a cos θ − b sin θ)θ̇

�
. (7)

Finally, the full state representation can be written as

xk+1 = fv (xk,uk, μk) =

⎡
⎣

xk+1

yk+1

θk+1

⎤
⎦ =

⎡
⎣

f1

f2

f3

⎤
⎦ , (8)

where

f1 =xk + Δt · Vk cos θk

− Δt
Vk

L
tan Ωk · (a sin θk + b cos θk)

f2 = yk + Δt · Vk sin θk

+ Δt
Vk

L
tan Ωk · (a cos θk − b sin θk)

f3 = θk + Δt
Vk

L
tan Ωk

and Δt denotes sampling interval. Reader should note
that the center of camera is regarded as the location of
robot. The velocity of the enter of the axle can be ob-
tained from encoders equipped in a shaft. If the linear
velocity of vehicle’s wheel is denoted by Ve, the Vk is
given by

Vk =
Ve

1 − tan(Ω) · H
L

. (9)

3.3.3 Measurement model of fiducial markers
The observation equation relating the vehicle states to

the observation is

zi,k = hi(xk,M, ηk) =

⎡
⎣
xC

i

yCi
zCi

⎤
⎦ =

⎡
⎣

Φ11

Φ21

zCi

⎤
⎦ , (10)
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where

Φ11 = −(xW
i − xk) sin θk + (yWi − yk) cos θk

Φ21 = −(xW
i − xk) cos θk − (yWi − yk) sin θk,

and ηk is a measurement noise vector which has Rk as a
covariance.

3.4 The EKF-based SLAM

3.4.1 The robot and landmarks models
The SLAM problem is that of moving through an envi-

ronment containing a population of features or landmarks
with a given vehicle with a known kinematic model, start-
ing at an unknown location. The vehicle is equipped with
a sensor that can take measurements of the relative lo-
cation between any individual landmark and the vehicle
itself. The absolute locations of the landmarks are not
available. For an unified framework to solve the SLAM
problem, we stack the state of vehicle and landmark as

x̃k+1 = f(x̃k,uk,wk) =
�
fv(xk,uk,wk)

m̂

�
(11)

Pk =
�

Pvv Pvm

PvmT Pmm

�
(12)

3.4.2 Prediction step
At the prediction step, the robot state is time-updated

without sensor information. At the same time, landmarks
in the environment are observed. State prediction is de-
scribed as

x̃k+1|k = f(x̃k|k,uk,wk). (13)

The covariance update is performed applying equation
below.

Pk+1|k = ∇fx̃Pk|k∇fTx̃ + ∇fuQk∇fTu . (14)

Jacobian matrix∇fx̃ is obtained by

∇fx̃ =
∂f

∂x̃k|k
=

⎡
⎢⎣

∂f1
∂(x,y,θ,mi)

∂f2
∂(x,y,θ,mi)

∂f3
∂(x,y,θ,mi)

⎤
⎥⎦ =

� ∇fvx 0vm

0T
vm Im

�
,

(15)

where 0vm isRdim(xv)×dim(m) and Im isRdim(m)×dim(m).
The notation dim(x) means the length of a given vector.
The Jacobian matrices in Eqn. (14) are ∇fvx = ∂fv

∂xk|k

and ∇fvu = ∂fv
∂uk

respectively.

3.4.3 Update step
A posterior state is computed by

x̃k+1|k+1 = x̃k+1|k + Kk+1

�
zk+1 − h

�
x̂k+1|k

��

Pk+1|k+1 = Pk+1|k − Kk+1Sk+1KT
k+1

Sk+1 = ∇hx̃aPk+1|k∇hx̃a + Rk+1

Kk+1 = Pk+1|k∇hx̃aS
−1
k+1

where ∇hx̃a = ∂hi

∂x̃a,k+1|k
.

3.4.4 State augmentation
If a new landmark measurement is available, the state

have to be augmented. The measurement must be con-
verted to global coordinates to be added to existing state.
Because the measurement is relative location between a
landmark and a vehicle. Let x̂aug be the augmented state
with measurement.

x̂aug =
�

x̃k

z

�

Paug =

⎡
⎣

Pvv Pvm 0
PT

vm Pmm 0
0 0 R

⎤
⎦

The measurement is then converted to global coordinates
by
⎡
⎣

mx,i

my,i

mz,i

⎤
⎦ =

⎡
⎣

xW
i

yWi
zWi

⎤
⎦ = gi(xk, z)

=

⎡
⎣

xk − xC
i sin θk − yCi cos θk

yk + xC
i cos θk − yCi sin θk

zCi

⎤
⎦

We then add the measurements by

x̃+
k = fi(x̂aug) =

�
x̃k

gi(xk, z)

�
. (16)

Covariance is updated by

Pa = ∇fxaugPaug∇fTxaug
(17)

where

∇fxaug =
∂fi

∂xaug
=

⎡
⎣

Iv 0 0
0 Im 0

∇gxv 0 ∇gz

⎤
⎦

and ∇gxv = ∂gi

∂xv
and ∇gxv = ∂gi

∂z .
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Fig. 5: The simulation result

4. EXPERIMENT RESULTS

This section shows simulation and experimental re-
sults of the algorithm presented. The simulation was done
in an area of 90 by 80 m with a sensor field of view
of 4 m (See Fig. 5a). The vehicle travels at a constant
speed of 1.5 m/s. The sensor observations are corrupted
with Gaussian noise with standard deviations of 0.1 m in
range.
The simulation results for the proposed SLAM algo-

rithm are shown in Fig. 5a. Here the dashed line depicts
the dead-reckoning for the robot pose and the dash-dot
line the estimated vehicle path.
Fig. 5b shows a zoom of the path of the simulation

which depicts in more detail the sensory information that
is added to the simulation environment obtained by the
algorithm. The small difference between the simulated
true path and estimated path illustrate the accuracy of the
results obtained by the approach.
The algorithm was also tested using experimental data.

In the experiment a lab-built robot was fitted with dead
reckoning and single camera. The testing environment
was the corridor of same floor of laboratory. Fig. 8a
shows the robot used for the experiments and 8b shows
a picture of experimental area. We attached 17 markers
on the side wall randomly.
Fig. 6 illustrates the result obtained with the algorithm.

The dashed line denotes the dead-reckoning for the robot
pose and the dash-dot line the robot’s path estimated. The
points on the plot represent an observed marker in the
global frame. We set the vehicle twisted 0.0914 rad in-
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Fig. 6: The experiment result. Video illustrat-
ing the proposed SLAM results is available from
http://www.alexlab.net/ICCAS2009 HyonLim.avi
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Fig. 7: The error between dead-reckoning and SLAM.

tentionally to verify the estimation accuracy. In reality,
robot was twisted but dead-reckoning result shows that
the odometry does not aware it. However, captured image
reflects the twisted angle. Therefore, the SLAM result
shows that it is very similiar trajectory that robot travels
in real. Due to the twist angle, robot was slipped about
0.55 m along y-axis. The estimated vehicle result shows
that the estimated slipped distance is very close to the
measured value. The travel distance is also same as mea-
sured value. The estimation result is shown in Fig. 7.

5. CONCLUSIONS

In this paper, we have proposed an indoor SLAM us-
ing fiducial markers. The proposed method is based on
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(a) Robot used while experiment

(b) Experiment Setup

Fig. 8: Experiment setup and used robot

pose estimation of fiducial markers and we combine it
with the EKF to estimate robot pose and landmark posi-
tions simultaneously in global coordinates. The major ad-
vantages of this approach can be summarized as follows:
First, we can build SLAM system in a cost-effective way
because the proposed system requires a single monocular
camera and fiducial markers easily generated using desk-
top printers. Second, landmarks can be installed flexibly
and randomly without any priori knowledge. This means
that there is no complicated calibration and measurement
process involved. Third, the proposed method has fea-
tures of easy data association and good robustness.
Using natural features to perform indoor SLAM is still

not mature enough. It has too many exceptions and as-
sumptions. Moreover, existing methods which use natu-
ral landmarks or features are easily fragile due to data as-
sociation failure. However, thanks to the proposed land-
mark model which includes identification code on the
surface, data association is highly successful. Moreover,
3D position of each landmark can be obtained from one
frame of image.
We used the EKF for the experiment in this paper. As

described in this paper, the EKF involves complicated Ja-
cobian matrices to linearize the motion model and mea-
surement model around current states. However, mean
and covariance of estimated states are slightly different
from true states. This causes inconsistent behaviour of
the EKF. To address this problem, recently, [15] pro-
poses new Kalman filter framework for nonlinear system
without linearization procedure. This is called unscented
Kalman filter (UKF). We expect that the application of
UKF will make the proposed method more accurate.
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