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ABSTRACT In this paper, we propose a light-weight rapid control prototyping (RCP) system based on
off-the-shelf open source hardware to achieve high performance computing, cost effectiveness, portability,
and easy accessiblity. The proposed RCP system consists of a PC-based computer-aided control system
design (CACSD) tool for computing control action and tiny palm-sized open source hardware for input and
output (I/O) operation and data transfer through a built-in high-speed USB interface. The popular-priced and
portable open source hardware is used as a bridge between CACSD tools and real plants to deliver the control
and sensor data at the sampling time points. Ten I/O function blocks written in C code are developed based
on the CACSD tool employed for the proposed light-weight RCP system in order to handle I/O operation
in a simple way. In addition, we suggest two practical strategies, a batch transfer strategy and a variable
sampling period method, to increase the sampling rate of the control system. It is shown through experiment
that the proposed light-weight RCP system works well up to a sampling rate of 2 kHz without adopting
expensive hardware and C code generators. It is expected that the proposed RCP system will be considered
as affordable and readily available to schools for mass education.

INDEX TERMS Arduino due, rapid control prototyping (RCP), block libraries, high-speed USB interface.

I. INTRODUCTION
As an efficient control design method, Rapid Control Pro-
totyping (RCP) has been widely used in many engineering
fields such as mechatronics [1], [2], automobiles [3], motion
control [4], and so on. RCP provides a fast and cost-effective
way for control engineers to quickly create working con-
trol system prototypes, verify their control algorithms on
hardware in similar environments to the real ones, and eval-
uate their control performances before entering the embed-
ded implementation stage. Such early verification through
RCP enables control engineers to easily adjust their designs
until they are satisfied with the results, allowing them to
have confidence that their designs will work in the field.
In other words, RCP reduces the development time and effort
by automating many of the demanding and repetitive tasks
and by allowing corrections and changes to be made early
when they are easy. In this regard, an RCP-based control
design can make control engineers focus on their main tasks
instead of tedious tasks for developing infrastructure such as
hardware interfaces, data acquisition and transmission, and
data plotting.

Existing RCP systems utilize target hardware for con-
trol computation. Target hardware can be a computer or an
embedded microcontroller board. If the target is a computer,
I/O boards are required for I/O operation. Code generation
software tools automatically generate target-specific C codes
from block diagrams of the control algorithms. Executable
programs made from generated C codes run on the target
hardware in a real time. A good survey on the existing com-
mercial RCP systems is given in [5]. Comparisons among
those RCP tools are also given therein. Such commercial RCP
systems show good performance in terms of their achievable
sample rate, real-time property, and diversity in I/O functions.
However, they are mostly very expensive and overwhelmed
with unnecessarily high and numerous advanced options.
Furthermore, I/O boards should be fixed to a particular com-
puter because their interfaces are PCI, ISA, or PCI Express.
For this reason, existing RCP systems are not portable and are
hence inconvenient when they need to move frequently.

In addition to commercial RCP systems, it has been
reported that laboratory-level RCP systems were also devel-
oped to design controls with low costs and moderate
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performance [6]–[9]. However, these non-commercial RCPs
are difficult to popularize due to issues with their reliability
and standardization. Even though they are not commercial-
ized, they also require a commercial C code generator, which
implies that they are not free from financial issues.

RCP systems for educational purpose should have cost
effectiveness and portability and should be based on readily
available hardware. However, existing RCP systems do not
satisfy all of these requirements. These issues have motivated
the research presented in this paper.

Recently, open source hardware has become prevalent
since its performance is great compared with its price and its
reliability is guaranteed by securing many users [10]–[12].
According to the definition given in [13], open source hard-
ware is hardware whose design is made publicly available
so that anyone can study, modify, distribute, make, and sell
the design or hardware based on that design without paying
royalties or fees. Since it comes with a variety of perfor-
mances, sizes, and price ranges, we can develop our own
applications with proper performance and an affordable price.
Open source hardware gives us the freedom to realize our
own creative ideas with an easy development environment
and plug-in interfaces. Such useful and efficient open source
hardware has been used for rapid prototyping of image
processing [14], communication systems [15], manufactur-
ing automation [16], [17], scientific instrumentation and
research [18], and so on.

Recently, MATLAB/Simulink, which is one of the most
well-known CACSD tools, has begun supporting some RCP
systems using open source hardware, which shows that even
big companies now realize the potential of open source hard-
ware. In this respect, it would be very meaningful and prac-
tical to make use of open source hardware for implementing
RCP methods.

In this paper, we propose a light-weight RCP system
based on the aforementioned open source hardware in order
to achieve high performance computing, cost effectiveness,
and portability. The proposed RCP system consists of a PC
based computer-aided control system design (CACSD) tool
for computing the control action and tiny palm-sized open
source hardware for I/O operation and data transfer through
built-in high-speed USB interfaces. Since a PC has superior
computing power compared with embedded processors, com-
plicated computations such as population-based optimization
and nonlinear programming can be efficiently performed.
Adopting PC-based computing instead of embedded comput-
ing, we can provide high performance with only a small sac-
rifice in communication latencies. Replacing expensive and
burdensome embedded processors and I/O boards, popular-
priced and portable open source hardware is used as a bridge
via high-speed USB interfaces between CACSD tools and
real plants to deliver control and sensor data at the sampling
time points. To connect controls to real plants in a visual
and easy way, ten I/O function blocks written in C code
are developed based on the CACSD tool employed for the
proposed light-weight RCP system, which sends the control

data to or receives the sensor data from the plant. In addition,
we suggest two practical strategies, a batch transfer strategy
and a variable sampling period method. The batch transfer
strategy can reduce the overheads required by each loop, and
then it drastically improves the communication efficiency.
The variable sampling period method provides more cor-
rect control by making good use of the time information
retrieved from the open source hardware. It is shown through
experiment that the proposed light-weight RCP systemworks
well up to the sampling rate of 2 KHz without adopting
expensive hardware and automatic C code generators. It is
expected that the proposed RCP system will be consid-
ered as affordable and easily available to schools for mass
education. Furthermore, the proposed system is believed to
contribute to the growing popularity of RCP-based control
design.

The remainder of this paper is organized as follows.
In Section II, an overview of the proposed light-weight RCP
is given together with its basic components. Software for
the proposed RCP system will be described in Section III.
An example of controller implementation and a supplemental
explanation using this example will be provided in Section IV.
A comparison with existing RCP systems is made in
Section V. Finally, conclusions are drawn in Section VI.

II. THE PROPOSED LIGHT-WEIGHT RCP SYSTEM
There exist several CACSD tools such as MATLAB/
Simulink [19], Labview [20], Scilab/Scicos [21], and
CEMTool/SIMTool [22]. All of them provide graphical
programming methods. Among those CACSD tools,
MATLAB/Simulink may be the most widely used because
of its powerful functionalities and easy interface. In this
paper, we choose to use MATLAB/Simulink as the CACSD
tool in which to implement the proposed RCP system.
It is mentioned that the proposed RCP system can also
be implemented into other CACSD tools through simple
customization.

A. AN OVERVIEW OF THE PROPOSED RCP SYSTEM
The schematic diagram given in Fig. 1 shows how the pro-
posed RCP system works. It shows that the proposed RCP
system consists of two subsystems, excluding the plant sys-
tem. The first subsystem is a PC system, in which Simulink
is running under MS Windows. The second subsystem is an
Arduino Due board, which has a built-in high-speed USB
interface.

The PC performs control computations and the Arduino
Due is in charge of I/O operation through its peripherals
such as ADC, encoder counter, DAC, and PWM. The PC
runs a Simulink controller model in which the sensor data
sent from the Arduino Due are received through input blocks
supported by the proposed RCP system, the control values are
computed using the received sensor data, and the computed
control data are then sent to the Arduino Due using the output
blocks, which are also supported by the proposed RCP sys-
tem. Data communication between the PC and the Arduino
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FIGURE 1. The schematic diagram of the proposed RCP system (IB: Input block, OB: Output block).

FIGURE 2. Flowchart of the proposed RCP system.

Due is done through high-speedUSB communication in order
to minimize the latency. The kinds of sensors and control
data to be received from and transmitted to the Arduino
Due are determined by the I/O blocks provided by the pro-
posed RCP system in a controller model constructed using
Simulink.

The controller model is built using various built-in blocks
provided by Simulink and the I/O blocks supported by the
proposed RCP system. The control action is further described
using the flowchart in Fig. 2. S1 and S5 are performed in the
Arduino Due and S2, S3, and S4 are performed on the PC. For
periodic real-time control operation, we utilize the SysTick
timer of the Arduino Due instead of using a real-time kernel
from the PC. Even though the sample time has a small amount
of jitter, it is overall real-time, which will be demonstrated
later in this paper.

In most existing RCP systems, the controller model con-
structed from Simulink is translated into C code by an
automatic code generator, compiled, and then downloaded
to the target hardware, which performs real-time control
operations. On the other hand, the proposed RCP system
does not go through the code generation process. Instead,
the Simulink controller model itself acts as a real-time

controller. Because the proposed RCP system does not
need cumbersome code generation, change and verifica-
tion of the controller can be done quickly. It is mentioned
that the code generator is an expensive tool, which costs
several thousand dollars and is not contained in a basic
version of MATLAB, but instead provided as a specialized
expensive toolbox. Furthermore, compilers are not required
either.

The reason why we choose the structure mentioned above
is because we want the proposed RCP system to be low-
cost, portable, and easily accessible with only a moderate
sacrifice in the fast sample rate of the control loop. Low cost
stems from the two facts: no additional software other than
MATLAB/Simulink is required, and the required hardware is
very cheap. Low cost and portability is further explained in
the next subsection.

B. ARDUINO DUE AS AN I/O BOARD
In this paper, we use the Arduino Due, which is a well-
known open source hardware platform, as an I/O board. The
Arduino Due is a microcontroller board based on the Atmel
SAM3X8E ARM Cortex-M3 CPU. It is the first Arduino
board based on a 32-bit ARM core microcontroller. It has
54 digital I/O pins of which 12 can be used as PWM outputs,
12 analog inputs, 2 DAC, a 84 MHz clock, a built-in native
USB port, etc. Fig. 3 shows a picture of the Arduino Due
board. The reasons why we choose the Arduino Due as an
I/O board are as follows:
• It is an open source hardware platform and hence well-
known, widely used, easily accessible, and affordable.
Its price is less than 50 dollars.

• The size of the board, 101.6 mm×53.3 mm, is small
enough to carry.

• It is based on a microcontroller adopting ARM
Cortex-M3 core, which has a Nested Vectored Interrupt
Controller (NVIC).

• It has plentiful I/O peripherals that can be used for
control purposes.

• It provides a built-in high-speed USB interface that can
transfer data at a fast speed.

11120 VOLUME 5, 2017



Y. S. Lee et al.: Light-Weight RCP System Based on Open Source Hardware

FIGURE 3. Arduino Due : a microcontroller board.

• A free IDE (integrated development environment), such
as Atmel Studio, is available.

In the proposed RCP system, the Arduino Due is not in charge
of the control computations. Instead, it only measures the
necessary sensor data and then sends them to the PC so that
Simulink can compute the required control value based on
the sensor data. The computed control data are sent back to
the Arduino Due and then applied through output peripherals.
The Arduino Due is widely used and its price is less than
50 dollars. In the proposed RCP system, the actual computa-
tion of the control is performed on the PC side. Thus, we do
not need such a high-speedmicrocontroller. TheArduinoDue
has a built-in high-speed USB interface. As is widely known,
USB supports plug-and-play and can be easily interfacedwith
any PC, including both laptops and desktops. Hence, the USB
interface contributes to the good portability of the proposed
RCP system. On the other hand, the I/O boards supporting
interfaces such as PCI, ISA, or express PCI are installed to a
PC after the power-off and installation change of the board to
another PC cause some inconvenience, which is not the case
in the proposed RCP system.

Nowadays, engineering education has put much emphasis
on hands-on experiments and design. RCP-basedmass educa-
tion of engineering undergraduates requires that the RCP sys-
tem be low-cost. Since support for take-home experiments or
design would enhance students’ understanding, portability of
the RCP system is also a prerequisite. Therefore, the Arduino
Due, which satisfies both cost effectiveness and portability,
may be the best choice for the I/O board for the proposed
RCP system.

The proposed RCP system provides ten I/O blocks that
are used to control some important I/O peripherals. By using
those blocks, transfer of the data to and from the Arduino Due
can be easily achieved.

C. RCP I/O BLOCKS
The most important feature of RCP systems is that they pro-
vide I/O blocks so that controller designers can easily handle
I/O operation. Thus controller designers do not have to spend
much time struggling with handling peripherals. Instead, they

FIGURE 4. I/O blocks supported by the proposed RCP system.

have only to focus on the control algorithm itself with the
help of the provided I/O blocks. The proposed RCP system
provides ten I/O blocks so that the controller can handle
I/O operation using the Arduino Due within the Simulink
environment. TABLE 1 lists the supported I/O blocks and
the corresponding descriptions. Fig. 4 shows those I/O blocks
that can be used with Simulink. The blocks in the left column
are input blocks and the blocks in the right column are output
blocks. Some blocks support multiple channels. For example,
the ADC block has 8 channels. In order to change the channel
configuration, we can double-click the block and then choose
the channel number through a dialog box. Fig. 5 shows the
dialog box of the ADC block.

TABLE 1. Descriptions of the I/O blocks supported by the proposed RCP
system.

Among those ten I/O blocks, the PWM block and Time
block will be more detailed as follows:
• PWM block: PWM is usually used for controlling
electric motors, and the PWM block supported by the
proposed RCP system provides two types of PWM
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FIGURE 5. Channel selection of the ADC block through a dialog box.

FIGURE 6. Dialog box of the PWM block.

interface, the PWM/Dir interface and complementary
PWM interface. The frequency of PWM can be con-
figured. PWM signals are sometimes required to be
synchronized together, which means that those PWM
signals are all generated from a single counter. For this
purpose, the PWM block provides options for synchro-
nization. Furthermore, the dead time for each PWM
channel can be specified independently. Fig. 6 shows
the dialog box of PWM block by which all options
mentioned above can be specified.

• Time block: The Time block can be used to obtain the
elapsed time from the Arduino Due. Two types of time
information can be obtained: time and time difference.
Time is the system time itself and time difference is
the difference in the system time between the previous
sample and the current sample. Fig. 7 shows the dialog
box for the Time block.

D. A PIN MAP FOR THE PROPOSED RCP SYSTEM
The proposed RCP system supports ten I/O blocks. Each
I/O block has its own pins on the Arduino Due. Fig. 8
shows the pin map diagram developed to help users find the
pins dedicated to the I/O blocks supported by the proposed
RCP system. In order to use a particular I/O operation, we
can check the position of the pins for the chosen I/O operation
by referring to the pin map and connecting the appropri-
ate wire. We then put the corresponding I/O block in the

FIGURE 7. Dialog box of the Time block.

Simulink model. By running the completed Simulink model,
we can easily handle the required I/O operation.

III. SOFTWARE OF THE PROPOSED RCP SYSTEM
In this section, we describe the software programs that have
been developed to implement the proposed RCP system. One
program runs on the Arduino Due and the other program runs
on a PC within the Simulink environment. The Simulink-
side program has been developed through an S-function writ-
ten in C code. S-functions provide a powerful mechanism
for extending the capabilities of the Simulink environment.
An S-function is a computer language description of a
Simulink block written inMATLAB, C, C++, or Fortran [23].
Users can write anS

¯
-function to describe a user-defined

function block. In order to handle the USB communica-
tion and improve the computation speed, we developed an
S-function in C. The program for the Arduino Due has been
developed in C under Atmel Studio [24].

Two programs interact with each other as shown in the
flow chart in Fig. 2. It illustrates that I/O operations are taken
care of by the Arduino Due and the control computation
is performed by Simulink running on the PC. Before the
loops on both sides begin, some necessary initialization steps
for each side take place. During the initialization phase, the
S-function program determines the type of I/O blocks used
in a Simulink model, the execution order among those
I/O blocks, the sample time of the Simulink model, etc., and
sends the gathered information to the Arudino Due. During
the initialization phase, the program on the Arduino Due
receives information on I/O blocks from Simulink, appro-
priately initializes the peripherals corresponding to those
I/O blocks, and notifies the Simulink that the Arduino Due is
ready to start a loop. The flow chart shown in Fig. 9 illustrates
this initialization phase for both sides sequentially.

Once the loops begin on both sides, procedures shown in
the flow chart in Fig. 10 will be repeated until the end of
simulation. During the loops, the data transmission between
two sides is performed on the basis of batch transfer strategy,
which will be more clarified in the next section. Further
explanation of the flow chart is given as follows:
• The Arduino Due reads the sensor data using the input
peripherals and fills out TxData[] with the acquired
data. The kind of input peripherals and the order in
which they are read are determined from the information
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FIGURE 8. Pin map on the Arduino Due developed for the proposed RCP system.

FIGURE 9. Flowcharts for the initialization phase.

(KindOfMeasure[]) received from Simulink during the
initialization phase. After all the acquired data are filled
in TxData[], they are batch-transferred to the PC through
USB communication.

• The I/O block that has the first execution order among
all I/O blocks in the Simulink model receives the

batch-transferred data from the Arduino Due and store
them in RxBuffer[].

• If any block is an input block, it retrieves its data from
RxBuffer[] and update the output of the input block
using the retrieved data. Offset information on that block
in RxBuffer[] is utilized to obtain the correct data from
RxBuffer[].

• If any block is an output block, it processes its input data
appropriately and fills them in TxBuffer[] at the proper
position. Offset information on that block in TxBuffer[]
is utilized to get the correct position in TxBuffer[].

• The I/O block that has the last execution order among all
I/O blocks in the Simulink model batch-transfers all the
data in TxBuffer[] filled by output blocks to the Arduino
Due through USB communication.

• The Arduino Due receives the batch-transferred con-
trol data from the PC and stores them in RxData[].
The control data are then retrieved and applied to the
corresponding output peripherals. The kind of output
peripherals and the order in which they are accessed
are determined from the information (KindOfControl[])
received from Simulink during the initialization
phase.

The control system is implemented such that it performs
periodic control operation according to a constant sample
time. In the proposed RCP system, we use the SysTick timer
of the Arduino Due in order to determine the elapsed time.
The elapsed time in micro-seconds can be determined from
the timer and enables periodic control operation. The elapsed
time information is available to the control algorithm using
the Time block.
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FIGURE 10. Flowcharts for the loop phase.

Real-time control requires that all control operations are
finished within the given sample time. In the proposed RCP
system, the control computation is performed in Simulink
running under Windows, which is not a real-time operating
system. Furthermore, the USB communication is not real-
time either. Hence, the operations S1 to S5 in one iteration
of the control loop are not guaranteed to be finished within a
given sample time. In this case, the actual sample time should
be carefully taken into account in the control algorithm. The
Time block supported by the proposed RCP system enables
the control designer to construct a control algorithm that can
handle a variable sample time.

The PC-side program can be implemented on CACSD
tools other than MATLAB/Simulink as long as they support a
mechanism for custom blocks. The program for the Arduino
Due can be implemented on other open source hardware such
as Beaglebone Black [12] or Nucleo board [25] with a high-
speed USB interface.

IV. CONTROL IMPLEMENTATION AND
SUPPLEMENTAL EXPLANATION
In order to illustrate that a control system can easily be
implemented using the proposed RCP system, we construct
a wireless control system for a two-wheeled mobile robot.
Figure 11 is a schematic diagram of the control system of
a two-wheeled mobile robot. Figure 12 shows a lab-built

FIGURE 11. Schematic diagram of a two-wheeled mobile robot control
using the proposed RCP system.

FIGURE 12. A lab-built mobile robot with the proposed RCP system
mounted on it.

mobile robot used for experiments. The control purpose is
to maneuver the robot by wirelessly changing the forward
and rotational speeds of the robot. A robot operator trans-
mits commands for the forward velocity and the rotational
velocity of the robot using an RC transmitter. The RC receiver
mounted on the robot receives these commands and outputs
them as PWM signals. In the control system, the two velocity
commands are calculated by measuring the widths of the
PWM signals. Then, the two commands are converted into
the velocity commands of the two wheels using the kinematic
information for the robot. The forward velocity v and the rota-
tional velocity w of a two-wheeled mobile robot are related
with the wheel velocitieswR (right wheel) andwL (left wheel)
as follows [26]:

v =
r(wR + wL)

2
, w =

r(wR − wL)
2b

, (1)

where r is the radius of a wheel and b is half the distance
between the two wheels. Using the above relations, velocity
commands for the wheels are obtained as follows:

w̄R =
v̄+ bw̄
r

, w̄L =
v̄− bw̄
r

, (2)
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FIGURE 13. Control block diagram for a two-wheeled mobile robot.

FIGURE 14. Block diagram of a subsystem for a two-wheeled mobile
robot.

where overbars denote commands. By including two
PI velocity controllers in the control system, the operator can
maneuver the robot according to the commands transmitted
by the user. In the proposed RCP system, a PC performs
control computations through Simulink. Thus we use Intel’s
NUC computer, which is a small-sized mini-PC, so that it can
be mounted on a mobile robot.

Fig. 13 shows a Simulink block diagram for the control
system constructed using the proposed RCP system. It is
seen that the Period and Duty blocks are used to measure
the widths of the PWM signals. The block labeled ‘Robot’
is a subsystem that drives two DC motors and measures the
velocities of the motors. A more detailed internal configura-
tion is shown in Fig. 14. We can see that two PWM blocks,
two Encoder blocks, and a Time block are used. As shown in
Fig. 13, it is seen that the control algorithm can be easily and
quickly implemented by using functional blocks provided by
Simulink, such as a transfer function block or a PID block
together with the I/O blocks provided in the proposed RCP
system. Any signal can also be monitored using the Scope
block. This ease of monitoring provides great convenience in
controller design. The implemented controller in Fig. 13 per-
formed satisfactorily. As shown in this example, this easy-to-
use controller design process allows students to concentrate
on the theoretical aspects of controller design and avoid the
hassles of manual coding, which are prone to errors.

FIGURE 15. Tracking control result: reference(dashed) and actual
position (solid).

Fig. 15 shows the experimental results when tracking con-
trol experiments are performed on the mobile robot using the
control algorithm shown in Fig. 13. The sample rate of the
control algorithm is 1 KHz. The blue dashed line shows
the reference position and the solid red line indicates the
actual position. We see that the mobile robot successfully
follows the reference position.

In the above experiment, we used two PI controllers for
simple illustration. However, more advanced control methods
have been widely used for robotic systems. For example,
adaptive control/neural network control for robotic systems
has gained much attention recently [27]–[30]. The control
methods presented therein can also be implemented with the
proposed RCP system.

In the remaining part of this section, we add some supple-
mental explanations for Section III using the Simulink model
in Fig. 13. When we run the Simulink model in Fig. 13, the
information on the input/ouput blocks is collected through
the initialization phase shown by the flow chart in Fig. 9.
The information collected includes the order in which each
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TABLE 2. Execution order determined after the initialization phase.

TABLE 3. TxDataInfo and RxDataInfo obtained after the initialization
phase.

TABLE 4. Offset information obtained after the initialization phase.

I/O block is executed, with RxDataInfo indicating the type
of input block and the order of execution among the input
blocks and TxDataInfo indicating the type of output block
and the order of execution among the output blocks. Also,
in order to assemble the data to be batch-transferred, the
offset information indicating where each block data resides
in the buffer array is also obtained during the initialization
phase. The information gathered is sent to Arduino Due
so that Arduino Due can also perform its required initial-
ization phase. TABLE 2 shows the execution order of the
I/O blocks included in the Simulink model in Fig. 13. Among
the multiple I/O blocks used, it is observed that the Period
and Duty block with channel 0 has the first execution order.
TABLE 3 shows the contents of TxDataInfo and RxDataInfo
and Table 4 shows the offset information. According to
Table 4, we find that data of Encoder block with channel 0
is stored at the index 20 in the buffer array. Using the offset
information, the data can be assembled before the batch
transfer at each loop. Data arrangement in the buffer array is
shown in Fig. 16. These data are batch-transferred each time
the loop is executed. By adopting the batch transfer strategy,
the proposed RCP system can minimize the latency caused
by the data transfer and consequently increase the sample rate
of the control system.

The control system built from the proposed RCP system
does not guarantee perfect hard real-time feature because it

FIGURE 16. Buffer arrays (TxBuffer and RxBuffer) for batch transfer.

adopts MS Windows and USB communication, which are
easily available but not real-time. Therefore, it may happen
that the control loop is not finished within the assumed sam-
ple time. To solve this problem due to a variable sample time,
the controller designer can use the Time block to obtain the
actual sample time information. To have a better idea of this,
refer to the Simulink model in Fig. 13. The control system
in Fig. 13 includes two PI velocity controllers. The block
diagram for calculating the velocity can be found in Fig. 14.
It has two implementations for determining the angular veloc-
ity of the motor: the one in a dashed box and the other in the
dotted box. The derivative block in a dashed box calculates
the angular velocity, assuming the sample time to be constant.
On the other hand, the blocks contained in dotted boxes obtain
the angular velocity using the actual sample time length from
the Time block. If the control system is hard real-time, the
actual sample time length is constant and the two imple-
mentations will result in the same velocity values. However,
this is not the case because of MS Windows and the USB
communication.

Let us now consider a case where a sinusoidal velocity
reference is applied to the PI velocity controller. We choose a
sample rate of 4KHz, which is 4 times faster than the previous
example. Fig. 17 shows the length of the actual sample time
measured by the Time block. It is seen that the sample time
fluctuates around 0.25 ms. Deviation away from 0.25 ms
is as high as 0.45 ms at 3.5 second, which shows that the
control system is not hard real time. Velocity values obtained
through the derivative block, which assume that the sample
time length is constant, will be different from the actual
velocity. Consequently, the velocity control performance is
greatly deteriorated, as shown in Fig. 18. In the figure, the
black line represents the reference velocity and the red line
represents the velocity. The discrete values of the velocity
are due to the quantization that occurs because the resolution
of the encoder is finite. On the other hand, if the velocity is
calculated using the Time block, the velocity is calculated
by taking the actual sample time length into account. Even
though the sample time length is variable, velocity informa-
tion with good accuracy can be obtained. As a result, good
control performance is also achievable. Fig. 19 shows the
results of the velocity tracking control obtained with the Time
block used for velocity calculation. It shows that tracking
control is performed adequately. Unlike Fig. 18, it is observed
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FIGURE 17. Measured sample time length at the sample rate of 4 KHz.

FIGURE 18. Velocity tracking performance with the derivative block used:
reference (black line), velocity (red line).

that the velocity tracks the reference input quite well. As seen
from this example, the Time block provided in the proposed
RCP system enables the control algorithm to effectively cope
with a variable sample time. Because of this, it is also possible
to choose the sample time length not too conservatively.

Another experiment was performed with a sample rate of
2 KHz to verify whether the proposed RCP system is real-
time for that sample rate. Fig. 20 is the actual sample time
length measured through the Time block. It is seen that the
length is almost constant at 0.5 ms. This implies that the
proposed RCP system can successfully be used in a control
system with sample rates up to 2 KHz almost in real time.

V. HIGHLIGHTS AND COMPARISON
In this section, we highlight various feature of the proposed
RCP system and compare them with existing RCP tools. For
that purpose, the following criteria are taken into account.

FIGURE 19. Velocity tracking performance with the Time block
used: reference (black line), velocity (red line).

FIGURE 20. Measured sample time length at the sample rate of 2 KHz.

• generation of C code
• required software and hardware
• price
• achievable sample rate of control loop
• mobility
• portability
• appropriateness for mass education

Having mobility means that the RCP-based controller can be
mounted on a mobile platform and having portability means
that the RCP system, including its hardware, can be easily
carried, even to one’s homes for take-home experiments or
design. We assume that MATLAB/Simulink and a PC are
common minimum requirements for all RCP systems consid-
ered below. Therefore, the price of the system are considered
only for additional software and hardware.
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TABLE 5. Comparison with existing RCP systems : ◦ (good), 4 (medium), × (bad).

A. HIGHLIGHTS OF THE PROPOSED RCP SYSTEM
The required software and hardware for the proposed RCP
system are the I/O block library shown in Fig. 4 and an
Arduino Due board with the proposed program on the flash
memory. The proposed RCP system does not require an
expensive C code generator, known as a Simulink Coder. The
price of a Simulink Coder is several thousand dollars. Since
a Simulink model running on a PC in normal mode performs
as a real-time controller, all features of MATLAB/Simulink
are supported. A real-time kernel is not required because it
utilizes the SysTick timer in the Arduino Due for real-time
operation. However, the achievable sample rate is rather slow
(about 2 KHz) as illustrated in the previous section. A low
achievable sample rate can limit its applicability. However,
it is useful for educational applications. Since a PC is used
as a target hardware, even the control algorithm which is
computation-intensive or requires a large amoung of memory
can be well handled. For example, predictive control in [31],
which solves the computation-intensive quadratic program-
ming problem at each sample time, can be well handled.
Swing-up control for a double inverted pendulum presented
in [32], which requires a large amount of memory for storing
all of the gain matrices in the horizon, can also be well
handled. Since the proposed RCP system utilizes palm-sized
ArduinoDue as an I/O board, the portability is very good. The
price of an Arduino Due is less than 50 dollars. With low cost
and good portability, the proposed RCP system is perfect for
mass education. Take-home design assignments can be well
supported by the proposed RCP system. Nowadays, since
variousmini-PCswith very small sizes, such as the Intel NUC
and HP Pavilion, are available, the proposed RCP system can
be mounted on a mobile platform, having a medium level of
mobility.

B. COMPARISON
In this subsection, a comparison with existing RCP systems is
given. Readers may refer to [5] for a good survey on existing

RCP tools. TABLE 5 compares the proposed RCP system
with existing ones.

1) SIMULINK DESKTOP REAL-TIME
Simulink Desktop Real-Time provides a real-time kernel for
executing Simulink models on a laptop or desktop running
Windows or Mac OS X. It can be used in two ways. First, it
can be used such that the Simulink model itself performs real-
time control just like in the proposed RCP system. As a result,
no code generation is required. In this case, Simulink Desk-
top Real-Time supports real-time performance up to 1 kHz,
which is below that of the proposed RCP system. Second,
it can be used such that C code from the Simulink model
is generated for the same computer using Simulik Coder.
The compiled executable runs in Windows Kernel mode.
In this case, Simulink Desktop Real-Time supports real-time
performance up to 20KHz. SimulinkDesktop Real-Time also
includes library blocks that connect to a wide range of I/O
cards with various interfaces such as PCI, ISA, PCI Express,
and PCMCIA. Unfortunately, no I/O device supports the USB
interface. As a result, the portability is very poor. Since mini-
PCs do not support slot-based interfaces, Simulink Desk-
top Real-Time doesn’t have good mobility. Furthermore, the
price of I/O devices ranges from several hundred to several
thousand dollars. For these reasons, Simulink Desktop Real-
Time is not appropriate for mass education.

2) xPC TARGET
In xPC Target, two separate computers are required. A host
computer with Simulink generates C code for a PC compati-
ble target hardware with its own real-time operating system.
Therefore, Simulink Coder is required. The host connects to
the target using TCP/IP during operation for visualization
of the results. Since the computer is completely dedicated
to xPC Target tasking, xPC Target can achieve sample rates
approaching 50 KHz, depending on the processor perfor-
mance level, model size, and I/O complexity. xPC Target
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supports a similar set of I/O cards compared to Simulink
Desktop Real-Time, which means that no I/O cards with
USB interfaces are available and thus portability is poor.
However, xPC Target allows mobile operation by using a
target computer in a PC/104 form factor. PC/104 I/Omodules
are also available. The price of PC/104 modules ranges from
several hundred to more than 1000 dollars, showing that xPC
Target is not appropriate for mass education.

3) dSPACE SYSTEM
The dSPACE system is an RCP system provided by Company
dSPACE Gmbh. In the dSPACE system, the Simulink Coder
together with Real Time Interface (RTI) generates code for
high-performance hardware based on PowerPC processors.
A single board (DS1104) or modular hardware (processor
board + I/O boards) runs the compiled application in real-
time. The ControlDesk software on a host computer interacts
with the application running on a target to visualize results.
The achievable sample rate is 50 KHz, depending on the
processor performance level, model size, and I/O complexity.
The price of the system is very high, including both the
software and the hardware. If MicroAutoBox hardware is
used as a target, it is mobile even though the size is not small
enough. Due to its high price and performance, the dSPACE
system is appropriate for advanced research.

4) EMBEDDED TARGETS
An embedded microcontroller board can be used as a tar-
get hardware. In Embedded Targets, C code is generated
from the Simulink model for a particular embedded micro-
controller using the Embedded Coder, with prices as high
as several thousands of dollars. The Target Support Pack-
age (TSP) supports the complete code generation process
for a particular microcontroller. The Integrated develop-
ment environment (IDE) for the microcontroller is required
for compilation of the generated code. The JTAG debug-
ger is needed for downloading the compiled application
to the embedded microcontroller board. Embedded micro-
controllers have limited computational power and memory
compared to PCs. Therefore, the achievable sample rate
depends on the microcontroller performance, model size, and
I/O complexity. Computation-intensive control algorithms
will drop the achievable sample rate drastically. Even though
the embedded mircocontroller board is portable, take-home
assignments can be hardly supported because of the high
price of Embedded Coder. Since it is based on a embedded
target, it has the best mobility among all RCP systems.

VI. CONCLUSIONS
In this paper, we proposed a new RCP system based on
MATLAB/Simulink and the Arduino Due with a built-in
high-speed USB communication interface.

The proposed RCP system currently provides ten
I/O library blocks for use with Simulink. Using those library
blocks, users can build a prototype control algorithm both
easily and quickly. We described the programs for both sides,

which are the Arduino side and PC side. Since the control
algorithm is computed by Simulink running on a PC, we
can make full use of the strength of Simulink. Furthermore,
one can use various functions provided by MATLAB, and
thus complicated control algorithms can be built. Since the
proposed RCP system does not use a C code generator, the
price of which is several thousands of dollars, and since
it uses the cheap Arduino Due board as an I/O device, it
is ideal for mass education for engineering undergraduates.
Furthermore, the small size of an Arduino Due board enables
take-home assignments to be supported. The proposed RCP
system has limited real-time property and can be used at
a moderate sample rate of 2 KHz. Despite this limitation,
several advantages such as cost effectiveness, portability, and
good availability of the hardware make it sufficiently useful
for educational purposes. In the future, we plan to add more
I/O blocks so that the proposed RCP system can handle
more control systems. We will also consider using the USB
3.0 SuperSpeed interface, which is ten times faster than the
USB 2.0 high-speed interface, in order to increase the sample
rate of the control loop.
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