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This paper concerns a problem of robust stabilization of uncertain state-delayed systems. A new delay-dependent stabil-
ization condition using a memoryless controller is formulated in terms of matrix inequalities. An algorithm involving
convex optimization is proposed to design a controller guaranteeing a suboptimal maximal delay such that the system
can be stabilized for all admissible uncertainties.

1. Introduction

During the last decades, considerable attention has

been devoted to the problem of stability analysis and

controller design for time-delay systems. Especially, in

accordance with the advance of robust control theory, a

number of robust stabilization methods have been pro-
posed for uncertain time-delay systems.

The existing robust stabilization results for time-

delay systems can be classi® ed into two types: delay-

independent stabilization (Phoojaruenchanachai and

Furuta 1992, Xie and de Souza 1993, Mahmoud and

Al-Muthairi 1994, Lee et al. 1994, Kim et al. 1996)
and delay-dependent stabilization (Niculescu et al.

1994, Li and de Souza 1997 a, b, Fu et al. 1998, Li et

al. 1998). The delay-independent stabilization provides a

controller which can stabilize a system irrespective of the

size of the delay. On the other hand, the delay-depen-

dent stabilization is concerned with the size of the delay
and usually provides an upper bound of the delay such

that the closed-loop system is stable for any delay less

than the upper bound. While the delay-independent

stabilization has been extensively studied by many

researchers for the last decades, the study for the
delay-dependent stabilization is relatively new and still

under progress (Niculescu et al. 1998). In general, the

delay-dependent stabilization is considered less conser-

vative than the delay-independent case. However, the

existing delay-dependent stabilization results are still

too conservative in some cases. In particular, when

applied to a system which is stabilizable independent
of the size of the delay, the existing delay-dependent

stabilization methods often yield very conservative

results, far from providing in® nity as the upper bound

of the allowable delay.

In this paper, a new delay-dependent robust stabil-

ization condition using a memoryless controller is pre-
sented for uncertain state-delayed systems. An

algorithm involving convex optimization is proposed

to design a controller guaranteeing a suboptimal max-

imal delay such that the system can be stabilized for all

admissible uncertainties. It is shown by numerical ex-
amples that the proposed stabilization method can be

less conservative than existing results and even capture

the delay-independent stabilizability of the system,

which is not possible with the previous results. It is

also shown that the conservatism can be further reduced

using a delayed feedback control for a case where the

size of the delay is known.
The organization of the paper is as follows. In } 2,

the problem to be solved is formulated and preliminary

results are given. In } 3, nominal state-delayed systems

without uncertainties are considered ® rst and stability
analysis and stabilization results are presented. Then,

} 4 deals with uncertain time-delay systems and the

results of the previous section are extended to robust

stability and stabilization conditions. In } 5, numerical

examples are given for a comparison of the proposed
method with previous results and ® nally } 6 makes con-

clusions.

2. Problem statement and preliminaries

Consider the following uncertain state-delayed

systems

_xx…t† ˆ …A ‡ DF…t†E†x…t† ‡ …A1 ‡ D1F1…t†E1†x…t h†

‡ …B ‡ DF …t†Eb†u…t†

x…t† ˆ ¿…t†; t 2 ‰ h; 0Š

9
>>=

>>;

…1†

where x…t† 2 Rn is the state, u…t† 2 Rm is the control,

h > 0 is the delay of the system, ¿…¢† is the initial con-
dition, A; A1; B; D; D1; E; E1 and Eb are real constant

matrices with appropriate dimensions and F…t† 2 Rj£k

and F1…t† 2 Rj1£k1 are time-varying uncertainties satisfy-

ing
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kF…t†k µ 1; kF1…t†k µ 1

We are interested in designing a memoryless state-feed-

back controller

u…t† ˆ Gx…t† …2†

where G 2 Rm£n is a constant gain matrix. Our aim is to
develop a delay-dependent robust stabilization method

which provides a controller gain G as well as an upper

bound ·hh of the delay such that the closed-loop system is

stable for any h satisfying 0 µ h µ ·hh and for all admis-
sible uncertainties.

For a special case where the information on the size

of the delay h is available, we also consider a delayed

feedback controller of the form

u…t† ˆ Gx…t† ‡ G1x…t h† …3†

Although a memoryless controller (2) has an advantage

of easy implementation, its performance cannot be

better than a delayed feedback controller which utilize

the available information of the size of the delay. A
more general form of a delayed feedback controller

might be

u…t† ˆ Gx…t† ‡
…t

t h

G2…s†x…s† ds …4†

However, the task of storing all the previous states x…¢†
and computing the values of the time-varying gain
matrices G2…¢† makes the practical realization of the in® -

nite-dimensional controller (4) very di� cult. In this

respect, the controller (3) could be considered as a com-

promise between the performance improvement and the

implementational simplicity. For the controller given by
(4), see Ross (1971).

In obtaining the main results of this paper, the fol-

lowing upper bound for the inner product of two vectors

plays an important role

2aTb µ inf
X;Y ;Z

a

b

µ ¶T X Y I

YT I Z

µ ¶
a

b

µ ¶
…5†

where

X Y

YT Z

µ ¶
¶ 0

and I denotes an identity matrix with an appropriate

dimension.

A special choice of Y and Z such that Y ˆ I and

Z ˆ X 1 in (5) provides a well-known upper bound

2aTb µ inf
X>0

faTXa ‡ bTX 1bg

Also, choosing Y ˆ I ‡ XM and Z ˆ …MTX ‡ I†X 1£
…XM ‡ I† gives an upper bound

2aTb µ inf
X>0;M

f…a ‡ Mb†TX…a ‡ Mb†

‡ bTX 1b ‡ 2bTMbg …6†

which was introduced by the authors in Park et al.

(1998) and Park (1999) for stability analysis of time-
delay systems. Although the underlying idea is similar,

the upper bound (5) has a simpler form than (6), which

enables one to solve synthesis problems.

Extending the idea of (5), we have the following

lemma.

Lemma 1: Assume that a…¢† 2 Rna , b…¢† 2 Rnb and

N …¢† 2 Rna£nb are de® ned on the interval O. Then, for

any matrices X 2 Rna£na , Y 2 Rna£nb and Z 2 Rnb£nb ;
the following holds

2

…

O
aT…¬†N b…¬† d¬ µ

…

O

a…¬†

b…¬†

" #T

£
X Y N

YT N T
Z

" #

£
a…¬†

b…¬†

" #
d¬ …7†

where

X Y

YT Z

µ ¶
¶ 0

In the following section, instead of directly dealing

with the uncertain system (1), we ® rst consider a nom-

inal system without uncertainties and present stability

and stabilization conditions.

3. Stability and stabilization for nominal systems

Let us consider a nominal state-delayed system

_xx…t† ˆ Ax…t† ‡ A1x…t h† ‡ Bu…t†

x…t† ˆ ¿…t†; t 2 ‰ h; 0Š

)
…8†

We start with stability analysis of the unforced system

(8) with u…t† ˆ 0. The following theorem presents a

delay-dependent stability condition, which is the starting

point of our further developments.

Theorem 1: If there exist P > 0, Q > 0, X, Y and Z

such that

ATP ‡ PA ‡ ·hhX ‡ Y ‡ YT ‡ Q Y ‡ PA1
·hhATZ

YT ‡ AT
1 P Q ·hhAT

1 Z

·hhZA ·hhZA1
·hhZ

2
64

3
75 < 0

…9†

X Y

YT Z

µ ¶
¶ 0 …10†
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then the unforced system …8† with u…t† ˆ 0 is asymptoti -

cally stable for any time-delay h satisfying 0 µ h µ ·hh.

Proof: Choose a Lyapunov functional as

V…x…t ¬†; ¬ 2 ‰0; ·hhŠ† ˆ V1 ‡ V2 ‡ V3 …11†

where

V1 7 xT…t†Px…t†

V2 7

…0

h

…t

t‡­

_xxT…¬†Z _xx…¬† d¬ d­

V3 7

…t

t h

xT…¬†Qx…¬† d¬

Since it holds that

x…t† x…t h† ²
…t

t h

_xx…¼† d¼

ˆ
…t

t h

‰Ax…¼† ‡ A1x…¼ h†Š d¼

the unforced system (8) can be written as (Hale and

Lunel 1993)

_xx…t† ˆ …A ‡ A1†x…t† A1

…t

t h

‰Ax…¬† ‡ A1x…¬ h†Š d¬

and thus the derivative of V1 satis® es the relation

_VV1 ˆ 2xT…t†P…A ‡ A1†x…t† 2xT…t†PA1

…t

t h

_xx…¬† d¬

De® ning a…¢†, b…¢†, and N in (7) as a…¬† 7 x…t†;
b…¬† 7 _xx…¬†; and N 7 PA1 for all ¬ 2 ‰t h; tŠ and

applying Lemma 1 will supply (10) and

_VV1 µ 2xT…t†P…A ‡ A1†x…t† ‡ hxT…t†Xx…t†

‡ 2xT…t†…Y PA1†
…t

t h

_xx…¬† d¬

‡
…t

t h

_xxT…¬†Z _xx…¬† d¬

µ xT…t†…ATP ‡ PA ‡ ·hhX ‡ Y ‡ YT†x…t†

‡ 2xT…t†…PA1 Y†x…t h† ‡
…t

t h

_xxT…¬†Z _xx…¬† d¬

Since _VV2 and _VV3 yield the relation

_VV2 ˆ h‰Ax…t† ‡ A1x…t h†ŠTZ‰Ax…t† ‡ A1x…t h†Š
…t

t h

_xxT…¬†Z _xx…¬† d¬

_VV3 ˆ xT…t†Qx…t† xT…t h†Qx…t h†

we have the derivative of V as

_VV ˆ _VV1 ‡ _VV2 ‡ _VV3

µ
x…t†

x…t h†

" #T

£
…1; 1† PA1 Y ‡ ·hhATZA1

AT
1 P YT ‡ ·hhAT

1 ZA Q ‡ ·hhAT
1 ZA1

" #

£
x…t†

x…t h†

" #

where

…1; 1† 7 ATP ‡ PA ‡ ·hhX ‡ Y ‡ YT ‡ ·hhATZA ‡ Q

Then, using the Lyapunov± Krasovskii stability theorem

(Hale and Lunel 1993) and Schur complement (Boyd et

al. 1994), we can conclude that the unforced system (8) is

asymptotically stable if (9) and (10) hold. This completes

the proof. &

The proposed stability conditions (9) and (10) are

linear matrix inequality (LMI) conditions. Hence, it is

easy to compute the maximum upper bound of the

allowable delay ·hh using e� cient convex optimization

algorithms (Boyd et al. 1994).
In the following theorem, we extend Theorem 1 to

design a stabilizing memoryless controller (2) for the

system (8).

Theorem 2: If there exist L > 0, M, N, R, V and

W > 0 such that
…1; 1† N ‡ A1L ·hh…LAT ‡ VTBT†

NT ‡ LAT
1 W ·hhLAT

1

·hh…AL ‡ BV† ·hhA1L ·hhR

2

64

3

75 < 0

…12†

M N

NT LR 1L

µ ¶
¶ 0 …13†

where

…1; 1† 7 LAT ‡ AL ‡ BV ‡ VTBT

‡ ·hhM ‡ N ‡ NT ‡ W

then the system …8† with the control u…t† ˆ VL 1x…t† is

asymptotically stable for any time-delay h satisfying
0 µ h µ ·hh.

Proof: In view of the closed-loop system of (8) with

the control (2), we replace A in (9) with A ‡ BG. Now,

pre- and postmultiply diag …P 1; P 1; Z 1† and

diag …P 1; P 1† to (9) and (10), respectively and apply
the change of variables such that L 7 P 1, M 7

P 1XP 1, N 7 P 1YP 1, R 7 Z 1, W 7 P 1QP 1,

and V 7 GP 1; then we obtain (12) and (13). This

completes the proof. &
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It is noted that the resulting conditions for synthesis

problem in Theorem 2 are no more LMI conditions

because of the term LR 1L in (13). As a result, unfortu-
nately, we cannot ® nd in general the global maximum ·hh
using convex optimization algorithms in this case.

An easy way to obtain a suboptimal maximal delay

instead is simply setting R ˆ L in (12) and (13), which

results in LMI conditions. However, if one can aŒord
more computational eŒorts, better results can be

obtained using an iterative algorithm presented next.

First, we de® ne a new variable S such that

LR 1L ¶ S and replace the condition (13) with

M N

NT S

µ ¶
¶ 0; LR 1L ¶ S …14†

Since LR 1L ¶ S is equivalent to L 1RL 1 µ S 1, the

condition (14) is equal to

M N

NT S

µ ¶
¶ 0;

S 1 L 1

L 1 R 1

" #
¶ 0

by Schur complement (Boyd et al. 1994). Then, by intro-
ducing new variables T , J and K , the original condition

(13) can be represented as

M N

NT S

" #

¶ 0;
T J

J K

" #

¶ 0;

T ˆ S 1; J ˆ L 1; K ˆ R 1

Now, using a cone complementarity problem (El

Ghaoui et al. 1997), we suggest the following non-linear

minimization problem involving LMI conditions instead

of the original non-convex feasibility problem of

Theorem 2

Minimize

subject to

Tr…ST ‡ LJ ‡ RK†
…12† and

M N

NT S

µ ¶
¶ 0;

T J

J K

µ ¶
¶ 0

L > 0; W > 0

S I

I T

µ ¶
¶ 0;

L I

I J

µ ¶
¶ 0

R I

I K

µ ¶
¶ 0

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

…15†

If the solution of the above minimization problem is 3n,

that is, Tr …ST ‡ LJ ‡ RK† ˆ 3n, we can say from

Theorem 2 that the system (8) with the control

u…t† ˆ VL 1x…t† is asymptotically stable. Although it is

still impossible to always ® nd the global optimal sol-

ution, the proposed non-linear minimization problem
is easier to solve than the original non-convex feasibility

problem. Actually, utilizing the linearization method (El

Ghaoui et al. 1997), we can easily ® nd a suboptimal

maximal delay using an iterative algorithm presented

in the following. Note that the condition (13) is used

as a stopping criterion in the algorithm since it is

numerically very di� cult in practice to obtain the opti-

mal solution such that Tr …ST ‡ LJ ‡ RK† is exactly

equal to 3n.

Algorithm 1:

Step 1. Choose a su� ciently small initial ·hh > 0 such

that there exists a feasible solution to (12) and

(15). Set ·hhso ˆ ·hh.

Step 2. Find a feasible set …J0; K0; L0; M0; N0; R0; S0;
T0; V0; W0† satisfying (12) and (15). Set k ˆ 0.

Step 3. Solve the following LMI problem for the vari-

ables …J ; K ; L; M; N ; R; S; T ; V ; W†

Minimize Tr …SkT ‡ TkS ‡ LkJ ‡ JkL ‡ RkK ‡ KkR†
subject to (12) and (15)

Step 1. Set Jk‡1 ˆ J ; Kk‡1 ˆ K ; Lk‡1 ˆ L; Rk‡1 ˆ R;
Sk‡1 ˆ S and Tk‡1 ˆ T .

Step 4. If the condition (13) is satis® ed, then set ·hhso ˆ ·hh
and return to Step 2 after increasing ·hh to some

extent. If the condition (13) is not satis® ed

within a speci® ed number of iterations, say

kmax , then exit. Otherwise, set k ˆ k ‡ 1 and
go to Step 3.

The above algorithm gives a suboptimal maximal
delay ·hhso such that the system (8) can be stabilized

with the controller (2). Later, in } 5, we shall illustrate

via numerical examples that the above algorithm can

provide quite satisfactory results.

Now, let us consider a special case where the size of
the delay h is known. In this case, the delayed feedback

controller (3) can be used instead of the memoryless

controller (2). By setting A1 7 A1 ‡ BG1 in (12) and

applying the change of variable V1 7 G1P 1, we can

obtain a stabilization condition for a delayed feedback

controller (3) as follows.

Corollary 1: Suppose that h is known. If there exist

L > 0, M, N, R, V, V1 and W > 0 such that

…1; 1† N ‡ A1L ‡ BV1 h…LAT ‡ VTBT†
NT ‡ LAT

1 ‡ VT
1 BT W h…LAT

1 ‡ VT
1 BT†

h…AL ‡ BV† h…A1L ‡ BV1† hR

2

64

3

75 < 0

…16†

M N

NT LR 1L

µ ¶
¶ 0 …17†

where

…1; 1† 7 LAT ‡ AL ‡ BV ‡ VTBT ‡ hM ‡ N ‡ NT ‡ W

then the system …8† with the control

1450 Y. S. Moon et al.



u…t† ˆ VL 1x…t† ‡ V1L 1x…t h†

is asymptotically stable.

Algorithm 1 can be similarly applied to obtain a

suboptimal maximal delay h for a delayed feedback con-

troller.

In the following section, we extend the obtained
stability and stabilization conditions to robust con-

ditions for the uncertain system (1).

4. Robust stability and stabilization for uncertain

systems

The following theorem provides robust stability

analysis of the unforced system (1) with u…t† ˆ 0.

Theorem 3: If there exist matrices P > 0, Q > 0, X ;
Y ; Z and scalars e1 and e2 such that

Y11 Y ‡ PA1
·hhATZ PD PD1

YT ‡ AT
1 P Q ‡ e2ET

1 E1
·hhAT

1 Z 0 0

·hhZA ·hhZA1
·hhZ ·hhZD ·hhZD1

DTP 0 ·hhDTZ e1I 0

DT
1 P 0 ·hhDT

1 Z 0 e2I

2
6666664

3
7777775

< 0

…18†

X Y

YT Z

µ ¶
¶ 0 …19†

where

Y11 7 ATP ‡ PA ‡ ·hhX ‡ Y ‡ YT ‡ Q ‡ e1ETE

then the unforced system …1† with u…t† ˆ 0 is asymptoti -
cally stable for any time-delay h satisfying 0 µ h µ ·hh and

all admissible uncertainties.

Proof: Replace A and A1 in (9) with A ‡ DF…t†E and

A1 ‡ D1F1…t†E1, respectively and multiply both sides
of the resulting matrix by vectors xi for i ˆ 1; . . . ; 3.

Next, de® ne

p 7 F…t†Ex1; q 7 F1…t†E1x2

Then we have the condition

x1

x2

x3

p

q

2

6666664

3

7777775

T
X11 Y ‡ PA1

·hhATZ PD PD1

YT ‡ AT
1 P Q ·hhAT

1 Z 0 0

·hhZA ·hhZA1
·hhZ ·hhZD ·hhZD1

DTP 0 ·hhDTZ 0 0

DT
1 P 0 ·hhDT

1 Z 0 0

2

6666664

3

7777775

x1

x2

x3

p

q

2

6666664

3

7777775
< 0

…20†

for all admissible F…t† and F1…t†, where

X11 7 ATP ‡ PA ‡ ·hhX ‡ Y ‡ YT ‡ Q

Since the conditions kF…t†k µ 1 and kF1…t†k µ 1 can be

replaced with the existence conditions of e1 > 0 and

e2 > 0 such that

e1pTp µ e1xT
1 ETEx1; e2qTq µ e2x

T
3 ET

1 E1x3

applying the S-procedure (Boyd et al. 1994) allows us to

obtain (18). This completes the proof. &

Next, we extend Theorem 3 to design a robust sta-
bilizing memoryless controller (2) for the system (1) in

the following theorem.

Theorem 4: If there exist matrices L > 0, M, N, R,

V, W > 0 and scalars e1; e2; . . . ; e6 such that

Y11 N ‡ A1L Y13 LET ‡ VTET
b Y15 0 0

NT ‡ LAT
1 W ·hhLAT

1 0 0 LET
1

·hhLET
1

YT
13

·hhA1L Y33 0 0 0 0

EL ‡ EbV 0 0 e1I e3I 0 0

YT
15 0 0 e3I e2I 0 0

0 E1L 0 0 0 e4I e6I

0 ·hhE1L 0 0 0 e6I e5I

2

666666666664

3

777777777775

< 0

…21†

M N

NT LR 1L

µ ¶
¶ 0 …22†

where

Y11 7 LAT ‡ AL ‡ BV ‡ VTBT ‡ ·hhM

‡ N ‡ NT ‡ W ‡ e1DDT ‡ e4D1DT
1

Y13 7 ·hh…LAT ‡ VTBT† ‡ e3DDT ‡ e6D1D
T
1

Y15 7 ·hh…LET ‡ VTET
b †

Y33 7 ·hhR ‡ e2DDT ‡ e5D1DT
1

then the system …1† with the control u…t† ˆ VL 1x…t† is

asymptotically stable for any time-delay h satisfying

0 µ h µ ·hh and all admissible uncertainties.

Proof: As in the proof of Theorem 3, replace A, A1

and B in (12) with A ‡ DF…t†E, A1 ‡ D1F1…t†E1 and
B ‡ DF…t†Eb, respectively and multiply both sides of

the resulting matrix by vectors xi for i ˆ 1; . . . ; 3. If we

de® ne

p1 7 FT…t†DTx1; p2 7 FT…t†DTx3

q1 7 FT
1 …t†DT

1 x1; q2 7 FT
1 …t†DT

1 x3

then we have the following condition

x1

x2

x3

p1

p2

q1

q2

2

666666666664

3

777777777775

T
X11 N ‡ A1L X13 X14 X15 0 0

N
T ‡ LA

T
1 W ·hhLA

T
1 0 0 LE

T
1

·hhLE
T
1

XT
13

·hhA1L ·hhR 0 0 0 0

XT
14 0 0 0 0 0 0

XT
15 0 0 0 0 0 0

0 E1L 0 0 0 0 0

0 ·hhE1L 0 0 0 0 0

2

666666666664

3

777777777775

x1

x2

x3

p1

p2

q1

q2

2

666666666664

3

777777777775

< 0

…23†

for all admissible F…t† and F1…t†, where

Stabilization of uncertain state-delayed systems 1451



X11 7 LAT ‡ AL ‡ BV ‡ VTBT ‡ ·hhM ‡ N ‡ NT ‡ W

X13 7 ·hh…LAT ‡ VTBT†
X14 7 LET ‡ VTET

b

X15 7 ·hh…LET ‡ VTET
b †

We shall now claim that the condition kF…t†k µ 1 can be

replaced with the condition that there exist e1; e2; e3 such

that

p1

p2

" #T
e1I e3I

e3I e2I

" #
p1

p2

" #
µ

DTx1

DTx3

" #T
e1I e3I

e3I e2I

" #
DTx1

DTx3

" #

…24†

e1I e3I

e3I e2I

" #
> 0 …25†

To prove this claim, we ® rst UDL-decompose the left-

hand side of (25) into

e1I e3I

e3I e2I

µ ¶
ˆ

I f1I

0 I

µ ¶
g1I 0

0 g2I

µ ¶
I f1I

0 I

µ ¶T

where g1 and g2 are positive because the UDL-decom-

position preserves matrix inertia. Now consider the left-

hand side of (24)

p1

p2

" #T
e1I e3I

e3I e2I

" #
p1

p2

" #

ˆ
p1

p2

" #T
I f1I

0 I

" #
g1I 0

0 g2I

" #
I f1I

0 I

" #T
p1

p2

" #

ˆ
DTx1

DTx3

" #T
I f1I

0 I

" #
g1F…t†FT…t† 0

0 g2F…t†FT…t†

" #

£
I f1I

0 I

" #T
DTx1

DTx3

" #

µ
DTx1

DTx3

" #T
I f1I

0 I

" #
g1I 0

0 g2I

" #
I f1I

0 I

" #T
DTx1

DTx3

" #

ˆ
DTx1

DTx3

" #T
e1I e3I

e3I e2I

" #
DTx1

DTx3

" #

Similarly, kF1…t†k µ 1 can be replaced with the con-

dition that there exist e4; e5; e6 such that

q1

q2

µ ¶T e4I e6I

e6I e5I

µ ¶
q1

q2

µ ¶
µ DT

1 x1

DT
1 x3

" #T
e4I e6I

e6I e5I

µ ¶
DT

1 x1

DT
1 x3

" #

…26†

e4I e6I

e6I e5I

µ ¶
> 0 …27†

Now applying the S-procedure (Boyd et al. 1994) to

(23), (24), (25), (26) and (27), we can obtain (21). This

completes the proof. &

If we consider a case where the size of the delay h is

measurable, a stabilization condition for a delayed feed-
back controller (3) can be obtained as follows.

Corollary 2: Suppose that h is known. If there exist

matrices L > 0, M, N, R, V, V1, W > 0 and scalars

e1; e2; . . . ; e6 such that

Y11 Y12 Y13 LET ‡ VTET
b h…LET ‡VTET

b † 0 0

YT
12 W Y23 VT

1 ET
b hVT

1 ET
b LET

1 hLET
1

YT
13 YT

23 Y33 0 0 0 0

EL ‡ EbV EbV1 0 e1I e3I 0 0

h…EL ‡ EbV† hEbV1 0 e3I e2I 0 0

0 E1L 0 0 0 e4I e6I

0 hE1L 0 0 0 e6I e5I

2

666666666664

3

777777777775

< 0

M N

NT LR 1L

µ ¶
¶ 0

where

Y11 7 LAT ‡ AL ‡ BV ‡ VTBT ‡ hM ‡ N ‡ NT

‡ W ‡ e1DDT ‡ e4D1DT
1

Y12 7 N ‡ A1L ‡ BV1

Y13 7 h…LAT ‡ VTBT† ‡ e3DDT ‡ e6D1DT
1

Y23 7 h…LAT
1 ‡ VT

1 BT†

Y33 7 hR ‡ e2DDT ‡ e5D1DT
1

then the system …1† with the control

u…t† ˆ VL 1x…t† ‡ V1L 1x…t h†

is asymptotically stable.

To compute a suboptimal maximal value of the

allowable delay ·hh (or h) in Theorem 4 (or Corollary 2),

Algorithm 1 for nominal systems can be similarly used

since the conditions with the non-convex term LR 1L

are the same as in the nominal case of the previous
section.

The following section presents numerical examples

which compare the proposed stabilization methods

with previous results.

5. Numerical examples

Let us consider the uncertain state-delayed system
(1) with system matrices

A ˆ
2 0

1 3

µ ¶
; A1 ˆ

1 0

0:8 1

µ ¶
; B ˆ

1

0

µ ¶

and uncertainties
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D ˆ D1 ˆ
0:2 0

0 0:2

µ ¶
; E ˆ E1 ˆ

1 0

0 1

µ ¶
; Eb ˆ 0

The above system is delay-independently stabilizable.

That is to say, the above system is robust stabilizable

for any h satisfying 0 µ h < 1. With the existing delay-
dependent robust stabilization results (Niculescu et al.

1994, Li and de Souza 1997 a, b), however, one can only

obtain quite conservative results. In fact, the largest

upper bound of the delay among existing results is

given by Li and de Souza (1997 a) as ·hh ˆ 0:5557. On
the other hand, the delay-dependent stabilization con-

ditions proposed in Theorem 4 using Algorithm 1 pro-

vides ·hhso ˆ 1 as expected.

The next example considers the case where the

system is not delay-independently stabilizable. Let us

consider the uncertain time-delay system (1) with system
matrices

A ˆ
0 0

0 1

µ ¶
; A1 ˆ

2 0:5

0 1

µ ¶
; B ˆ

0

1

µ ¶
…28†

and the same uncertainties as in the above example. In

this case, the largest time-delay attainable from the

known delay-dependent robust stabilization methods

in the literature (Niculescu et al. 1994, Li and de

Souza 1997 a, b) is ·hh ˆ 0:3015 (Li and de Souza

1997 a). In the following, we shall illustrate that the
stabilization conditions proposed in this paper provides

less conservative results.

First, if we use the LMI conditions which can be

obtained from Theorem 4 by setting L ˆ R in (21) and

(22), we get ·hh ˆ 0:3830 with a stabilizing controller

u…t† ˆ ‰ 0:8226 3:0988 Šx…t†

Using Algorithm 1, we can obtain better results as

shown in table 1.

Note that the number of iterations in table 1 denotes

after how many iterations the stopping criterion, i.e. the

condition (13), was activated. From table 1, it is clear
that the robust stabilizing controller suggested in this

paper can be less conservative than the existing results.

For instance, even for ·hhso ˆ 0:4500, a stabilizing con-

troller can be obtained as

u…t† ˆ ‰ 4:8122 7:7129 Šx…t†

Now, we consider a special case where the size of the

delay h is known. In this case, table 2 shows that the

delayed feedback controller suggested in Corollary 2

using Algorithm 1 allows larger delays than memoryless

controllers.

The advantage of a delayed feedback controller over
a memoryless controller can be more clearly shown for

the nominal system (28) without uncertainties. In this

nominal case, the largest allowable delay among the

existing results is ·hh ˆ 0:4999 (Li and de Souza 1997 a)

using a memoryless controller. Using the memoryless

controller of Theorem 4 in this paper, we obtain
·hhso ˆ 1:0000 after 60 iterations. On the other hand, if

we suppose that the delay h is measurable, then the
delayed feedback control (3) can stabilize the system

for much larger values of delays. For instance, even

when h ˆ 1000, a stabilizing controller can be obtained

as

u…t† ˆ ‰ 0:00599 1:00149Šx…t†

‡ ‰7:99783 2:99945Šx…t 1000†

The last example considers a liquid monopropellant

rocket motor with a pressure feeding system, which is

more practical and complex than the previous examples.
This system is not delay-independently stabilizable

either. Through this example, we will illustrate the

robustness of the proposed stabilization method. A lin-

earized version of the feeding system and combustion

chamber equations, assuming nonsteady ¯ ow, is given

by Fiagbedzi and Pearson (1986)

_¿¿…t† ˆ …® 1†¿…t† ®¿…t h† ‡ ·…t h†

_··1…t† ˆ 1

¹J
Á…t† ‡ p0 p1

2¢p

µ ¶

_··…t† ˆ 1

…1 ¹†J
‰ ·…t† ‡ Á…t† P¿…t†Š

_ÁÁ…t† ˆ
1

E
‰·1…t† ·…t†Š

9
>>>>>>>>>>>=

>>>>>>>>>>>;

…29†

where t is the reduced time normalized by the gas resi-

dence time ³g in steady operation, h ˆ ·½½=³g is the

reduced time lag with ·½½ the value of the time lag in
steady operations, ¿…t† ˆ ‰p…t† ·ppŠ=·pp, with p…t† the

instantaneous pressure in the combustion chamber and

·pp the pressure in the combustion chamber in steady

operation, ·…t† ˆ … _mmi
·_mm_mm†=·_mm_mm, with _mmi the instanta-
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·hhso Number of iterations

0.3700 1
0.3750 2
0.4000 55
0.4500 99

Table 1. Memoryless controller of Theorem 4.

h Number of iterations

0.3700 1
0.3800 2
0.5000 28
0.5700 80

Table 2. Delayed feedback controller of Corollary 2.



neous mass rate of injected propellant and ·_mm_mm the value

of _mmi in steady operation, ·1…t† ˆ ‰ _mm1…t† ·_mm_mmŠ= ·_mm_mm; with

_mm1…t† the instantaneous mass ¯ ow upstream of the capa-

citance, Á…t† ˆ ‰p1…t† ·pp1Š=…2¢p†; with p1…t† the instan-

taneous pressure at the place in the feeding line where
the capacitance representing the elasticity is located, ·pp1

the value of p1 in steady operation and ¢p ˆ ·pp1 ·pp the

injector pressure drop in steady operation, p0 is the regu-

lated gas pressure for the pressure supply, P ˆ ·pp=…2¢p†,
® is the pressure exponent of the pressure dependence of

the combustion process taking place during the time lag,

¹ represents the fractional length for the pressure supply,

J is the inertia parameter of the line, and E is the elas-

ticity parameter of the line. Guided by the Fiagbedzi

and Pearson (1986), we take u ˆ …p0 p1†=…2¢p† as a

control variable and adopt the following representative
numerical values: ¹ ˆ 0:5; P ˆ 1; J ˆ 2 and E ˆ 1. We

assume parameter uncertainty on ®, which is represented

by ®…t† ˆ 1 ‡ ¬¯…t†, where ¬ > 0 and j¯…t†j µ 1. Hence,

1 ¬ µ ®…t† µ 1 ‡ ¬. Letting

x…t† ˆ ‰¿…t† ·1…t† ·…t† Á…t†ŠT

the system (29) reduces to (1), where

A ˆ

0 0 0 0

0 0 0 1

1 0 1 1

0 1 1 0

2

666664

3

777775
; A1 ˆ

1 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

2

666664

3

777775

B ˆ

0

1

0

0

2

666664

3

777775

D ˆ D1 ˆ ‰¬ 0 0 0ŠT

E ˆ ‰1 0 0 0Š; E1 ˆ ‰ 1 0 0 0Š

Eb ˆ 0; F…t† ˆ F1…t† ˆ ¯…t†

In case that ¬ ˆ 0:15 and ·hh ˆ 1, we have obtained the

following controller from Theorem 4

u…t† ˆ ‰976:9055 205:2514 817:4449 1011:8588Šx…t†
…30†

According to Theorem 4, the closed-loop system should

remain asymptotically stable against all admissible

uncertainties represented by 0:85 µ ®…t† µ 1:15 and

h µ 1: Figures 1 and 2 show the state trajectories of

x1…t† when controller (30) is applied. Initial condition
is assumed to be x…t† ˆ ‰1 1 1 1ŠT; t 2 ‰ h; 0Š. Figure 1

show that the controller (30) works well if h µ 1, while

the system is somewhat unstable when h ˆ 1:3: Figure 2

shows that the controller (30) works well if

0:85 µ ® µ 1:15 and the system oscillates when

® ˆ 1:25. From this example, it is clearly demonstrated
that the controller obtained from Theorem 4 robustly

stabilizes the uncertain time-delay systems.

6. Conclusions

This paper proposed a new robust stabilization
method for uncertain state-delayed systems which can

be less conservative than existing results. An algorithm

involving convex optimization was also proposed to

construct a controller with a suboptimal upper bound

of the delay such that the system can be stabilized for all

admissible uncertainties. It was shown by numerical ex-
amples that the proposed delay-dependent stabilization

method can even capture the delay-independent stabiliz-

ability of the system, which is not possible with the

existing results. It was also shown that a stabilizable

1454 Y. S. Moon et al.
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Figure 1. Variation of x1…t† with h.
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Figure 2. Variation of x1…t† with ®.



set of systems can be enlarged using a delayed feedback

control for a case where the information on the size of

the delay is available.
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