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State-delayed Systems 
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Abstract: This paper concerns delay-dependent guaranteed cost control (GCC) problem for a 
class of linear state-delayed systems with norm-bounded time-varying parametric uncertainties. 
By incorporating the free weighing matrix approach developed recently, new delay-dependent 
conditions for the existence of the guaranteed cost controller are presented in terms of matrix 
inequalities for both nominal state-delayed systems and uncertain state-delayed systems. An 
algorithm involving convex optimization is proposed to design a controller achieving a 
suboptimal guaranteed cost such that the system can be stabilized for all admissible 
uncertainties. Through numerical examples, it is shown that the proposed method can yield less 
guaranteed cost than the existing delay-dependent methods.  
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1. INTRODUCTION 
 
Since time-delay is often a source of instability in 

many engineering systems, considerable attention has 
been paid to the problem of stability analysis and 
controller synthesis for time-delay systems. Especially, 
in accordance with the advance of robust control 
theory, a number of robust stabilization methods have 
been proposed for uncertain time-delay systems.  

The existing robust stabilization results for time-
delay systems can be classified into two types: delay-
independent stabilization [1-4] and delay-dependent 
stabilization [5-9]. Delay-independent stabilization 
provides a controller that can stabilize a system 
irrespective of the size of the delay. On the other hand, 
delay-dependent stabilization is concerned with the 
size of the delay and usually provides an upper bound 
of the delay such that the closed-loop system is stable 
for any delay less than the upper bound. 

In addition to simple stabilization, there have been 
various efforts to assign certain performance criteria 
when designing a controller, such as quadratic cost 
minimization, H∞ norm minimization, pole placement, 

etc. Among them, guaranteed cost control aims at 
stabilizing the systems while maintaining an adequate 
level of performance represented by the quadratic cost. 
Guaranteed cost control for time-delay systems can 
also be categorized into delay-independent methods 
[10-12] and delay-dependent methods [13-16]. The 
recent research trend has been focused on delay-
dependent methods. In [13], delay-dependent GCC 
was first proposed by utilizing model transformation 
and Moon's inequality introduced in [7]. It was first 
illustrated that the delay-dependent GCC can provide 
even less guaranteed cost than the delay-independent 
GCC methods. In [14], the results of [13] were 
extended to the discrete-time case. The descriptor 
model transformation method combined with Moon's 
inequality was utilized in order to derive delay-
dependent GCC in [14]  

Recently, the free weighting matrix approach was 
proposed in order to overcome the conservativeness of 
methods involving a fixed model transformation [17]. 
It is expected that adopting the free weighting matrix 
approach for delay-dependent GCC may yield further 
improvement in the performance. This has motivated 
the work in this paper.  

This paper is structured as follows: In Section 2, 
problem formulation and some preliminaries are given. 
In Section 3, guaranteed cost control for nominal 
time-delay systems is considered and a nonlinear 
minimization problem is formulated such that the 
suboptimal minimum of the cost is obtained. In 
Section 4, guaranteed cost control for uncertain time-
delay systems is presented. In Section 5, numerical 
examples are provided and conclusions follow in 
Section 6.  
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2. PROBLEM FORMULATION 
 
Consider uncertain linear state-delayed systems 

represented by 

1 1( ) [ ( ) ] ( ) [ ( ) ] ( )
[ ( ) ] ( ),b

x t A D t E x t A D t E x t h
B D t E u t

= + Δ + + Δ −
+ + Δ

(1) 

( ) ( ), [ ,0],x t t t hφ= ∈ −                      (2) 

where nx R∈  is the state, mu R∈ is the control 
input, 1 1, , , , , , bA A B D E E E are all real constant 
matrices of appropriate dimension and 0h > is an 
unknown constant representing delay. ( )tΔ denotes 
time-varying parameter uncertainties and is assumed 
to be of block diagonal form  

1( ) diag{ ( ), , ( )}rt t tΔ = Δ Δ , 

where ( ) , 1, ,i ip q
i t R i r×Δ ∈ = are unknown real 

time-varying matrices satisfying 

( ) ( ) , 0.T
i it t I tΔ Δ ≤ ∀ ≥  

Throughout the paper, I  denotes an identity matrix 
of appropriate dimension. Given matrices 0Q >  and 

0R >  we will consider an infinite horizon quadratic 
cost function represented by 

0
[ ( ) ( ) ( ) ( )] .T TJ x t Qx t u t Ru t dt

∞
= +∫           (3) 

Associated with the cost (3), the guaranteed cost 
controller is defined as follows: 

Definition 1: Consider the uncertain state-delayed 
system (1). If there exists a control law ( )u t  and a 
positive scalar γ  such that, for all admissible 
uncertainties, the closed-loop system is stable and the 
closed-loop value of the cost function (3) satisfies 
J γ≤ , then γ  is said to be a guaranteed cost and 
( )u t  is said to be a guaranteed cost controller for the 

uncertain system (1). 
We are interested in designing a memoryless state-

feedback controller or a delayed state-feedback 
controller depending on the situations as follows: 

1

( ) : unknown constant delay
( )

( ) ( ) : knwon constant delay
Kx t

u t
Kx t K x t h

⎧
= ⎨ + −⎩

 

which achieves as small number of γ  as possible for 
uncertain state-delayed systems, where ,K  1K ∈  

m nR ×  are constant matrices. 
Before moving on, we introduce a lemma necessary 

to take uncertainties into account. 

Lemma 1 [13]: Let ,D E , and Δ be real matrices 
of appropriate dimensions with 1diag{ , , }rΔ = Δ Δ , 

, 1, , .T
i i I i rΔ Δ ≤ = Then, for any real matrix 

1diag{ , , } 0,rI Iλ λΛ = > the following inequalities 
will be true: 

1 .T T T T TD E E D D D E E−Δ + Δ ≤ Λ + Λ         (4) 
 

3. GUARANTEED COST CONTROL FOR 
NOMINAL SYSTEMS 

 
In the following section, instead of directly dealing 

with the uncertain system (1), we first consider a 
nominal system without uncertainties and offer 
stability and synthesis results. A nominal state-delayed 
system is represented by 

1( ) ( ) ( ) ( ),x t Ax t A x t h Bu t= + − +             (5) 
( ) ( ), [ ,0].x t t t hφ= ∈ −                      (6) 

The following theorem states a sufficient condition for 
the existence of guaranteed cost control for a nominal 
state-delayed system (5). 

Theorem 1: Given 0Q >  and 0,R > assume that 
there exists 1 0L > , 2L , 3L , U , W , 1N , 2N , 

3N , and V  such that 

1 1
2 2

11 12 13 1 1 2

22 23 2 3

33 3

44

0 0
0 0 0

00 0 0
0 0

0

T T

T

hN L Q V R hL

hN hL
hN

I
I

hU

⎡ ⎤
Γ Γ Γ⎢ ⎥
⎢ ⎥
∗ Γ Γ⎢ ⎥

⎢ ⎥∗ ∗ Γ
⎢ ⎥ ≤∗ ∗ ∗ Γ⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ −⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ ∗ −
⎢ ⎥∗ ∗ ∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦

(7) 

where 

11 2 2 1 1

12 3 2 1 2

13 1 3

22 3 3

23 1 1 2

33 3 3
1

44 1 1

,

( ) ,

,

,
,

,

,

T T

T T T

T

T

T

L L N N W

L L AL BV N

N N

L L
A L N

W N N

hL U L−

Γ = + + + +

Γ = + − + +

Γ = − +

Γ = +

Γ = − −

Γ = − − −

Γ = −

 

then the system (5) with the control 1
1( ) ( )u t VL x t−=  

is asymptotically stable for any constant time-delay 
0 h h≤ ≤  and the cost function (3) satisfies the 
following bound: 
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01 1 1
1 1 1

0 0 1

(0) (0) ( ) ( )

( ) ( ) .

T T

h

T

h

J x L x x L WL x d

x U x d d
β

α α α

α α α β

− − −

−

−

−

≤ +

+

∫
∫ ∫

  (8) 

Proof: Assume the control has the form ( )u t =  
( )Kx t . Then the closed-loop system is described by 

 1( ) ( ) ( )c cx t A x t A x t h= + − ,                 (9) 

where cA A BK= + and 1 1cA A= . For 0P > , 0S > , 
and 0Z > , define 

 
0

( ) ( ) ( ) ( ) ( )

( ) ( ) ,

tT T
t t h

t T

h t

V x x t Px t x Sx d

x Zx d d
β

α α α

α α α β

−

− +

= +

+

∫
∫ ∫

 

where tx denotes ( ) ( )tx x tθ θ= + , [ ,0]t h∈ − . 
Calculating the derivative of ( )tV x along the solution 
of the system in (9) yields 

( )
2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) .

T T Tt

tT T

t h

dV x
x t Px t x t Sx t x t h Sx t h

dt

hx t Zx t x Zx dα α α
−

= + − − −

+ − ∫
 

 
Applying the free weighting matrix approach 
introduced in [17], the following equations are true for 
any matrices 1Y , 2Y , 3Y  and 1T , 2T : 

 

1 2 3

1 2

1

2[ ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ] 0,

2[ ( ) ( ) ]
[ ( ) ( ) ( )] 0.

T T T

t

t h
T T

c c

x t Y x t Y x t h Y

x t x t h x d

x t T x t T
x t A x t A x t h

α α
−

+ + −

× − − − =

+
× − − − =

∫  

Furthermore, it holds that 

 ( ) ( ) ( ) ( ) 0
tT T

t h
h t X t t X t dη η η η α

−
− =∫ , 

where 

 
11 12 13

22 23

33

( )
0, ( ) ( )

( )

X X X x t
X X X t x t

X x t h
η

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ∗ ≥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∗ ∗ −⎣ ⎦⎣ ⎦

. 

From those, we obtain 

2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

tT T

t h

dV x t Px t x t Sx t x t h Sx t h
dt

hx t Zx t x Zx dα α α
−

= + − − −

+ − ∫
 

1 2 3

1 2 1

2[ ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ]

2[ ( ) ( ) ][ ( ) ( ) ( )]

( ) ( ) ( ) ( ) .

T T T

t

t h
T T

c c
tT T

t h

x t Y x t Y x t h Y

x t x t h x d

x t T x t T x t A x t A x t h

h t X t t X t d

α α

η η η η α

−

−

+ + + −

× − − −

+ + − − −

+ −

∫

∫

 

Therefore we have, for h h≥ ,  

( )
( )[ ] ( )

( ) ( ) ( , ) ( , ) ,

T Tt

tT T

t h

dV x
x t Q K RK x t

dt

t t t t dη η ς α ς α α
−

+ +

≤ Ξ − Ψ∫
    (10) 

where 

11 12 13 11 12 13

22 23 22 23

33 33

,
X X X

h X X
X

⎡ ⎤Γ Γ Γ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Ξ = ∗ Γ Γ + ∗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∗ ∗ Γ ∗ ∗⎣ ⎦⎣ ⎦

  (11) 

11 12 13 14

22 23 24

33 34

44

( )
( )

, ( , ) ,
( )

( )

X X X X x t
X X X x t

t
X X x t h

X x

ς α

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∗⎢ ⎥ ⎢ ⎥Ψ = =
⎢ ⎥ ⎢ ⎥∗ ∗ −
⎢ ⎥ ⎢ ⎥
∗ ∗ ∗ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 

11 1 1 1 1

12 2 1 2

13 3 1 1 1

22 2 2

23 2 2 1

33 3 3

,

,

,

,
,

.

T T T T
c c

T T T
c

T
c

T

c
T

S K RK Y Y T A A T

P Y T A T

Y Y T A

hZ T T
Y T A

S Y Y

Γ = + + + − −

Γ = + + −

Γ = − −

Γ = + +

Γ = − −

Γ = − − −

 

From (10), we see that 0Ξ ≤  and 0Ψ ≥  guarantee 
the asymptotic stability of the closed-loop system 
because we obtain 

( )
( )[ ] ( )T TtdV x

x t Q K RK x t
dt

≤ − + ,          (12) 

which implies that ( )tV x  is a Lyapunov-Krasovskii 
functional. Furthermore, integration of (12) from 0 to 
∞  yields 

0 0
( ) ( ) ( )[ ] ( ) .T TV x V x x t Q K RK x t dt

∞

∞ − ≤ − +∫  

Because ( ) 0V x∞ =  from asymptotic stability, we 
have 

0

0

( ) ( )[ ] ( )

[ ( ) ( ) ( ) ( )] .

T T

T T

V x x t Q K RK x t dt

x t Qx t u t Ru t dt J

∞

∞

∞

≥ +

= + =

∫
∫
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Therefore we have, for h h≥ ,  

0( ) (0) (0)TJ V x x Px≤ =  
0 0 0

( ) ( ) ( ) ( )T

h h
x Sx d x Zx d d

β
α α α α α α β

− −
+ +∫ ∫ ∫  (13) 

0
(0) (0) ( ) ( )T T

h
x Px x Sx dα α α

−
≤ + ∫  

0 0
( ) ( )

h
x Zx d d

β
α α α β

−
+∫ ∫ .                (14) 

The remaining part of the proof is to show that the 
satisfaction of (7) guarantees 0Ξ ≤  and 0Ψ ≥  and 
the right-hand side of (14) is equal to the right-hand 
side of (8). If we select 0Z > and X such that 

1 1
1

2 2

3 3

TY Y
X Y Z Y

Y Y

−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

then it is guaranteed that 0X ≥  and 0Ψ ≥ . From 
Schur complement, 0Ξ ≤  is equivalent to 

11 12 13 1

22 23 2

33 3

1

0.

hY
hY
hY
hZ

⎡ ⎤Γ Γ Γ
⎢ ⎥
∗ Γ Γ⎢ ⎥ ≤⎢ ⎥∗ ∗ Γ

⎢ ⎥
∗ ∗ ∗ −⎢ ⎥⎣ ⎦

               (15) 

Define 

1
1

2 32 3

0 0
T T

P L
L

L LT T

−
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

.               (16) 

Pre- and post-multiply (15) by 1 1diag{ , , }TL L L  and 

1 1diag{ , , }L L L . Introduce some change of variables 
such that 

1
1 1 1

1 1
1 3 1 3 1

2 2

, , ,

, .T

W L SL U Z V KL
N Y

L L N L Y L
N Y

−= = =

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

             (17) 

Then (15) is equivalently changed to (7) from Schur 
complement. From (16) and (17), we have 

1 1 1 1
1 1 1, ,P L S L WL Z U− − − −= = = .              (18) 

Substituting (18) into (14), we obtain the relation in 
(8). This completes the proof.  

It is noted that the inequality (7) is not an LMI 
condition because of the term 1

1 1hL U L−− . Theorem 1 
considers the case that the delay is constant but 
unknown. However, if the delay length is constant and 
exactly known, we can use the delay information and 

construct delayed state-feedback control as in the 
following corollary: 

Corollary 1: Given 0Q >  and 0R > , assume 
that there exist 1 2 3, 1 2 30, , , , , , , ,L L L U W N N N V>  

and 1V  such that 

11 2 3 1 5 6 2

22 23 2 3

33 3 36

44

0 0
0 0

00 0 0
0 0

0

T

T

hN hL

hN hL
hN

I
I

hU

1 1 1 1⎡ ⎤Γ Γ Γ Γ Γ
⎢ ⎥
∗ Γ Γ⎢ ⎥

⎢ ⎥∗ ∗ Γ Γ⎢ ⎥
≤⎢ ⎥∗ ∗ ∗ Γ

⎢ ⎥
∗ ∗ ∗ ∗ −⎢ ⎥

⎢ ⎥∗ ∗ ∗ ∗ ∗ −
⎢ ⎥
∗ ∗ ∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 (19) 

where 

11 2 2 1 1

12 3 2 1 2
1 1
2 2

13 1 3 15 1 16

22 3 3 23 1 1 1 2
1
2

33 3 3 36 1
1

44 1 1

,

( ) ,

, , ,

, ( ) ,

, ,

,

T T

T T T

T T

T

T T

L L N N W

L L AL BV N

N N L Q V R

L L A L BV N

W N N V R

hL U L−

Γ = + + + +

Γ = + − + +

Γ = − + Γ = Γ =

Γ = + Γ = − + −

Γ = − − − Γ =

Γ = −

 

then the system (5) with the control ( )u t =  
1 1

1 1 1( ) ( )VL x t V L x t h− −+ −  is asymptotically stable for 
known constant time-delay h  and the cost function 
(3) satisfies the following bound: 

01 1 1
1 1 1

0 0 1

(0) (0) ( ) ( )

( ) ( ) .

T T

h

T

h

J x L x x L WL x d

x U x d d
β

α α α

α α α β

− − −

−

−

−

≤ +

+

∫
∫ ∫

 (20) 

Proof: In case that the delay length is precisely 
known, we assume the control ( ) ( )u t Kx t= +  

1 ( )K x t h− .  
Then the closed-loop system reduces to (9) with 

cA A BK= + and 1 1 1.cA A BK= + The remaining 
proof procedure is straightforward from the proof of 
Theorem 1.  

Given h , in order to obtain the controller 
1

1( ) ( )u t VL t−= , which achieves the least guaranteed 

cost value γ ∗ , we have to solve the following 
minimization problem: 

1 2 3

1

Minimize
subject to 0 and (7)

J J J
L
+ +

>
                  (21) 
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where 

 1
1 1(0) (0),TJ x L x−=  

 
0 1 1

2 1 1( ) ( ) ,T

h
J x L WL x dα α α− −

−
= ∫  

 
0 0 1

3 ( ) ( )T

h
J x U x d d

β
α α α β−

− −
= ∫ ∫ . 

However, it is noted that the condition (7) is no more 
an LMI condition because of the term 1

1 1hL U L−− . In 
addition, the term 2J  is not a convex function of 1L  
and W . As a result, unfortunately, we cannot find in 
general the global minimum of the above 
minimization problem using a convex optimization 
algorithm. However, utilizing the idea in [7, 9], we 
can obtain a guaranteed cost controller achieving a 
suboptimal guaranteed cost, say soγ , using the 
iterative algorithm as presented next. 

First, we define a new variable M such that 
1

1 1L U L M− >  and replace the condition (7) with 

1 1
2 2

11 12 13 1 1 2

22 23 2 3

33 3

0 0
0 0 0

00 0 0
0 0

0

T T

T

hN L Q V R hL

hN hL
hN
hM

I
I

hU

⎡ ⎤
Γ Γ Γ⎢ ⎥
⎢ ⎥
∗ Γ Γ⎢ ⎥

⎢ ⎥∗ ∗ Γ
⎢ ⎥ ≤∗ ∗ ∗ −⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ −⎢ ⎥
⎢ ⎥∗ ∗ ∗ ∗ ∗ −
⎢ ⎥∗ ∗ ∗ ∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 

(22) 
and  

1
1 1 .L U L M− >                           (23) 

Since 1
1 1L U L M− >  is equivalent to 1 1 1

1 1 1L UL M− − −< , 
the condition (23) is equal to 

1 1
1

1
0.

*

M L

U

− −

−

⎡ ⎤
>⎢ ⎥

⎢ ⎥⎣ ⎦
                       (24) 

Then, by introducing a new variable 1,M L  and U , 
the condition (24) can be replaced by 

1 1 11
1 1, , ,

*
M L

M M L L U U
U

− − −⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
.     (25) 

It is noted that the satisfaction of the conditions (22) 
and (25) guarantees that the condition (7) is satisfied. 
Let us derive the upper bounds on the cost function 

1 2,J J , and 3J . For this purpose, let's denote 

 

0

0 0

( ) ( ) ,

( ) ( ) .

T

h

T

h

x s x s ds

x x d d
β

α α α β

−

−

Ψ =

Φ =

∫
∫ ∫

 

Because 0Φ ≥ , it always can be factorized as 
.TΦ = ΠΠ  We first start with the upper bound on 1J . 

Assume that there exists 0α >  which satisfies  

1
1(0) (0)Tx L x α− ≤ .                      (26) 

From the Schur complement, (26) is equivalent to 

1

(0) 0
*

Tx
L

α⎡ ⎤
≥⎢ ⎥

⎢ ⎥⎣ ⎦
.                       (27) 

To derive the upper bound on 2J , introduce a new 

variable TΩ = Ω such that 

1 1
1 1L WL− − < Ω .                         (28) 

By the Schur complement, (28) is equivalent to 

1
1

1
0

*

L

W

−

−

⎡ ⎤Ω
>⎢ ⎥

⎢ ⎥⎣ ⎦
.                        (29) 

Recalling 1
1 1L L− =  and introducing a new variable 

1W W −= , the condition (29) can be replaced by 

11 0,
*

L
W W

W
−⎡ ⎤Ω

> =⎢ ⎥
⎣ ⎦

.                 (30) 

Assuming (30), we can conclude that the following 
relation holds: 

 2 ( ).J tr≤ ΩΨ  

Recalling ( ) ( )tr AB tr BA= , we know that the 
following relation holds for 3J : 

 1 1
3 ( ) ( ).TJ tr U tr U− −= ΠΠ = Π Π  

Let us introduce a new matrix variable TΣ = Σ  such 
that 

1 .TU −Π Π ≤ Σ                           (31) 

By the Schur complement, (31) is equivalent to 

0
* U
Σ Π⎡ ⎤

≥⎢ ⎥
⎣ ⎦

.                           (32) 

Under the condition (32), 3J  satisfies 3 ( )J tr≤ Σ .  
It is noted that 1 2 3 ( ) ( )J J J J tr trα= + + ≤ + Σ + ΩΨ  
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is true under the conditions (27), (30), and (32). For 
some constant 0γ > , assume 

( ) ( )tr trα γ+ Σ + ΩΨ ≤ .                   (33) 

Combining those facts derived above, we can 
construct a feasibility problem for given h and γ as 
follows: 

1 1 2 3 1 2 3

1

Find , , , , , , , , , , ,

, , , , ,
subject to 0and (22),(25), (27),

(30), (32), (33).

L L L L N N N V W U M

W U M
L

αΩ Σ
>

    (34) 

Given h  and γ , if the above problem has a solution, 
we can say that there exists a controller 

1
1( ) ( )u t VL t−=  which guarantees that the cost function 

(3) is less than γ . It is noted that conditions (25) and 

(30) still include nonlinear conditions, e.g. 1
1 1L L−=  

and 1U U −= . However, using the idea introduced in 
[7, 9], the feasibility problem in (34) can be converted 
to the following nonlinear minimization problem 
involving LMI conditions: 

1 1

1

1 1

1

1

Minimize ( )
subject to

0, (22), (27), (32), (33)

0, 0,
* *

0, 0,
* *

0, 0.
* *

tr UU L L MM WW

L

M L L
U W

L I M I
L M

U I W I
U W

+ + +

>⎧
⎪
⎡ ⎤ ⎡ ⎤Ω⎪ > >⎢ ⎥ ⎢ ⎥⎪⎣ ⎦ ⎣ ⎦⎪⎪
⎡ ⎤ ⎡ ⎤⎨

≥ ≥⎢ ⎥ ⎢ ⎥⎪
⎣ ⎦⎣ ⎦⎪

⎪⎡ ⎤ ⎡ ⎤
⎪ ≥ ≥⎢ ⎥ ⎢ ⎥
⎪⎣ ⎦ ⎣ ⎦⎩

       

(35)

 

If the solution of the above minimization problem is 
4n , that is, 1 1( ) 4tr UU L L MM WW n+ + + = , we can 
say from Theorem 1 that system (5) with the control 

1( ) ( )u t VL x t−=  is asymptotically stable with the 
guaranteed cost γ . Even though the above 
minimization problem is also a nonlinear one, an 
iterative solution procedure similar to those proposed 
in [7, 9] can also be derived as follows: 

 
Algorithm 

1) Given h , choose a sufficiently large initial γ  
such that there exists a feasible solution to LMI 
conditions in (35). Set soγ γ= .  

2) Find feasible set ( 0
1L , 0

1L , 0
2L , 0

3L , 0
1N , 0

2N , 0
3N , 

0V , 0W , 0U , 0M , 0W , 0U , 0M , 0Ω , 0Σ , 0α ) 

satisfying LMIs in (35). 1k = . 
3) Solve the following LMI problem for the 

variables ( 1L , 1L , 2L , 3L , 1N , 2N , 3N , V , W , U , 
M , W , U , M , Ω , Σ , α ): 

 1 1

11

Minimize (

)

k k k k k

k k k

tr U U L L M M W W U U

L L M M W W

+ + + +

+ + +
 

 subject to LMIs in (35). 
Set 11 1 1

1 1 11, , , ,kk k kU U U U L L L L++ + += = = =  1kM +  

,M= 1 1,k kW W W W+ += = . 
4) If the conditions (23) and (28) are both satisfied, 

then set soγ γ=  and return to Step 2 after decreasing 
γ  to some extent. If the conditions (23) and (28) are 
not satisfied within a specified number of iterations, 
say maxk , then exit. Otherwise, set 1k k= +  and go 
to Step 3. 

The above algorithm gives a guaranteed cost 
controller 1

1( ) ( )u t VL x t−=  and the corresponding 
suboptimal guaranteed cost soγ . Later, in Section 5, 
we will illustrate via numerical example that the 
above algorithm can provide quite satisfactory results. 

Remark 1: For known constant delay, we can also 
construct an algorithm yielding the controller u(t) = 

1 1
1 1 1( ) ( )VL x t V L x t h− −+ −  and soγ  following the 

similar procedure described above. It is expected that 
for known constant delay, we can obtain a smaller 
value of soγ  than for unknown delay because we use 
the delay information in the controller. 

 
4. GUARANTEED COST CONTROL FOR 

UNCERTAIN SYSTEMS 
 
In this section, we extend the conditions obtained in 

Section 3 to robust conditions for the uncertain 
systems (1). The following theorem states the 
sufficient condition for the existence of guaranteed 
cost control for uncertain time-delay systems.  

Theorem 2: Given 0Q > and 0R > assume that 
there exist 1 0L > , 2L , 3L , U , W , 1N , 2N , 3N , 
V , and 1diag{ , , }rI Iλ λΛ =  such that 

11 12 13 14 15 16 17 18

22 23 24 27

33 34 38

44

77

* 0 0 0
* * 0 0 0
* * * 0 0 0 0

0
* * * * 0 0 0
* * * * * 0 0
* * * * * * 0
* * * * * * *

I
I

Γ Γ Γ Θ Θ Θ Θ Θ⎡ ⎤
⎢ ⎥Θ Γ Θ Θ⎢ ⎥
⎢ ⎥Γ Θ Θ
⎢ ⎥

Θ⎢ ⎥ ≤⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥Θ⎢ ⎥

−Λ⎢ ⎥⎣ ⎦

, 

(36) 
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where 
1 1
2 2

14 1 15 1 16

17 2 18 1

22 22 24 2 27 3

34 3, 38 1 1

1
44 1 1 77

, , ,

, ( ) ,

, , ,

( ) ,

, ,

T

T T
b

T T

T

hN L Q V R

hL EL E V

D D hN hL

hN E L

hL U L hU−

Θ = Θ = Θ =

Θ = Θ = +

Θ = Γ + Λ Θ = Θ =

Θ = Θ =

Θ = − Θ = −

 

then the uncertain system (5) with the control ( )u t =  
1

1 ( )VL x t−  is asymptotically stable for any constant 
time-delay 0 0 h≤ ≤  and the cost function (3) 
satisfies the following bound: 

01 1 1
1 1 1

0 0 1

(0) (0) ( ) ( )

( ) ( ) .

T T

h

T

h

J x L x x L WL x d

x U x d d
β

α α α

α α α β

− − −

−

−

−

≤ +

+

∫
∫ ∫

  (37) 

Proof: It is sufficient for the proof of Theorem 2 to 
show that (7) is still satisfied even with 1, ,A A  and 
B  replaced by A D E+ Δ , 1 1A D E+ Δ , and B +  

bD EΔ , respectively. Define the matrix in the left side 
of ‘≤ ’ in (7) to be Γ . Then, the condition (7) with 

1,A A , and B  replaced by A D E+ Δ , 1 1A D E+ Δ , 
and bB D E+ Δ , respectively, is written as 

0,T T TD E E DΓ + Δ + Δ <  (38) 

where 

1 1 1

[0 0 0 0 0 0 0] ,
[ 0 0 0 0 0 0].

T T

b

D D
E EL E V E L

−

+
 

According to (4) in Lemma 1, (38) holds if there 
exists 1diag{ , , } 0rI Iλ λΛ = >  such that 

1 0.TD D E E−Γ + Λ + Λ <                   (39) 

By the Schur complement, (39) is equivalent to (36). 
This completes the proof.  

Similarly to the nominal system case, we can derive 
results for known constant time-delay h . 

 
5. EXAMPLES 

 
In this section, we provide two numerical examples 

in order to illustrate that the proposed method is less 
conservative than the existing results. 

Example 1: Consider the uncertain time-delay 
system represented by 

( ) 1 ( ) ( ) ( )
( ) ( ) ( )

1 2 0.1 0.1

0
( ),

1 ( )

q t q t r t r t
x t x t x t h

u t
s t

+⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
+ ⎢ ⎥+⎣ ⎦

 

where 1h = , 2
1( ) 0.5

t

x t e= , and 2
2 ( )

t

x t e
−

= − , for 
[ 1,0].t∈ −  ( ), ( ), ( )q t r t s t  are scalar uncertain 

parameters satisfying the bound | ( ) | 0.5,q t ≤  
| ( ) | 0.5r t ≤ , and | ( ) | 0.5s t ≤ . It is assumed that 
Q I=  and 1R =  in the cost function (3). For this 
system, we obtain 

 
0 1
1 2

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

0 0
0.1 0.1

A
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 

0
1

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

1
1 1 0 1 0 0 0 1 01 , , ,
0 0 1 1 0 0 0 1 02

T T

D E E
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[0 0 1] , ( ) 2 diag{ ( ), ( ), ( )}T
bE t q t r t s t= Δ = × . 

This system is delay-independently stabilizable. 
Therefore, we first tested the delay-independent GCC 
proposed in [12]. For the purpose of comparison, we 
also tested the method proposed in [13]. Furthermore, 
the continuous-time counterpart of the method in [14] 
was derived and tested. Table 1 compares the costs 
and the controllers obtained from those four methods. 
It clearly shows that the proposed method yields much 
less cost than the delay-independent method. 
Furthermore, the proposed method outperforms the 
two other existing delay-dependent GCC methods. 

Example 2: Consider the uncertain time-delay 
ystems given in [6]. 

 
Table 1. Comparison of the obtained guaranteed cost 

(Example 1). 
Method Cost Controller matrix, K

Method of [12] 20.883 [ 38.21 14.46]− −  

Method of [13] 19.5 [ 40.26 16.10]− −  
Continuous time 

results of [14] 14.42 [ 17.6 9.31]− −  

Proposed method 13.8 [ 18.7 10.43]− −  
 

Table 2. Comparison of the obtained guaranteed cost 
(Example 2). 

Method Cost Controller matrix, K
Method of [12] ×  Infeasible 
Method of [13] ×  Infeasible 

Continuous time 
results of [14] 4.55 [0.0986 13.42]−  

Proposed method 4.2 [0.0579 2.93]−  
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1 1( ) [ ( )] ( ) [ ( )] ( )
( ),

x t A A t x t A A t x t h
Bu t

= + Δ + + Δ −
+

 

where 

1
0 0 2 0.5 0

, ,
0 1 0 1 1

A A B
− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
, 

and ( )A tΔ  and 1( )A tΔ  are uncertain matrices 
satisfying  

1( ) 0.2, ( ) 0.2A t A tΔ ≤ Δ ≤ . 

For the above system, we have  

1

1

2

0.2 0 0.2 0 1 0 0 0
, ,

0 0.2 0 0.2 0 1 0 0

0 0 1 0
, [0 0 0 0] ,

0 0 0 1

( ) 0
( ) ,

0 ( )

T

T
T

b

D E

E E

t
t

t

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

Δ⎡ ⎤
Δ = ⎢ ⎥Δ⎣ ⎦

 

where 2 2
1 2( ), ( )t t R ×Δ Δ ∈  such that ( ) ( )T

i it tΔ Δ ≤  
, 1,2.I i =  It is noted that the system is not delay-

independently stabilizable. Assume that the initial 
conditions are 1

1( ) tx t e +=  and 2 ( ) 0x t =  for t∈  
[ ,0]h−  and 0.37.h =  We chose , 1.Q I R= = Table 
2 compares the costs and controllers obtained for this 
system. Because the system is not delay-
independently stabilizable, the method proposed in 
[12] is not applicable in this case. Furthermore, it 
turned out that the method in [13] is not applicable 
either due to infeasibility. It turned out that the method 
in [14] and the proposed method were applicable. 
Table 2 shows that the proposed method has better 
performance than the method of [14] in this case. 

 
6. CONCLUSIONS 

 
 In this paper, we have presented a new delay-

dependent guaranteed cost control for uncertain time-
delay systems. While the existing delay-dependent 
GCC methods adopt the model transformation method 
combined with Moon’s inequality, the proposed 
method is based on the recently developed free 
weighting matrix approach in order to overcome the 
conservativeness of methods involving a fixed model 
transformation. First, guaranteed cost control for 
nominal delay systems was considered. Second, it was 
extended to the case of delay systems with parametric 
uncertainties. An algorithm involving convex optimi-
zation was also proposed to construct a controller with 
a suboptimal guaranteed cost such that the system can 
be stabilized for all admissible uncertainties. It was 

shown by numerical examples that the proposed 
delay-dependent guaranteed cost control method can 
provide even less guaranteed cost than the delay-
independent method. Furthermore, it turned out that 
the proposed method outperforms all existing delay-
dependent guaranteed cost control methods.  
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