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Abstract: In this paper a new type of filter, called the H2 / H∞ FIR filter, is proposed for discrete-
time state space signal models. The proposed filter requires linearity, unbiased property, FIR 
structure, and independence of the initial state information in addition to the performance criteria 
in both H2 and H∞ sense. It is shown that H2, H∞, and H2 / H∞ FIR filter design problems can be 
converted into convex programming problems via linear matrix inequalities (LMIs) with a linear 
equality constraint. Simulation studies illustrate that the proposed FIR filter is more robust 
against temporary uncertainties and has faster convergence than the conventional IIR filters. 
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1. INTRODUCTION 
 
The estimation problem deals with recovering some 

unknown parameters or variables from measured 
information in physical or mathematical models. 
Among estimation problems, the state estimator, 
called the filter, has been widely investigated for wide 
applications. The performance of the filter is 
measured by stability, small error, and insensitivity or 
robustness to signal model uncertainties and 
disturbances. 

For a small error, it is usual to require the filter to 
be unbiased. For stochastic systems, an unbiased filter 
means that no matter what the real state is, the filter 
will follow it on the average. This also means that if 
there is no noise in the systems the filter will follow 
the real state exactly. In a similar way to the stochastic 
case, filters for deterministic systems can adopt the 
unbiased property in a deterministic sense. The 
unbiasedness for deterministic systems requires the 
filters to match exactly the real states of systems with 
zero disturbances. In short, the unbiased property will 
be used even for deterministic systems throughout this 
paper. The terminology ‘deadbeat’ has also been used 
in other studies instead of ‘unbiased’ [1,2].  

Some prefer finite impulse response (FIR) filters to 

infinite impulse response (IIR) filters for robustness 
and stability. FIR filters make use of a finite number 
of measurements and inputs on the most recent time 
interval [ , 1],k N k− −  called the receding horizon, 
or the moving window. FIR filters for signal 
reconstruction have long been researched. However, 
FIR filters for state reconstruction have recently been 
investigated [3-6]. It has been generally accepted that 
the FIR structure is more robust to temporary 
modeling uncertain parameters and numerical errors 
than the IIR structure. Additionally, bounded input 
bounded output (BIBO) stability is always guaranteed 
for FIR filters.  

In conventional filters that estimate states, the 
initial state information is often assumed to be known, 
which in practice, is often not the case. Therefore, in 
this paper the initial state information is assumed to be 
completely unknown. That is, the suggested filters 
will be obtained independently of the initial state 
information. 

In this paper a linear FIR filter that is independent 
of the initial state information is represented by 

1 1
ˆ

k k

k k i i k i i
i k N i k N

x H y L u
− −

− −
= − = −

= +∑ ∑   (1) 

at time k for some gains k iH −  and .k iL −  The filter 
gains k iH −  and k iL −  are independent of the initial 
state information.  

Filter properties depend heavily on the performance 
criterion. In the H2 performance criterion, the H2 norm 
of the transfer function from the disturbance to the 
estimation error is minimized [7-9]. This approach has 
been widely used and researched because it is 
tractable mathematically. In the H∞ performance 
criterion, the worst case gain between disturbance and 
estimation error is minimized [10-14]. More recently, 
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there have been approaches that consider both of the 
performance criteria simultaneously [15]. In this paper, 
we will take those two performance criteria into 
account to obtain the optimal filter for state space 
models. 

Existing FIR filters are mainly focused on the 
minimum variance criterion that is a special case of 
the H2 performance criterion [3-6]. The H∞ FIR 
filtering problem was first considered in [16]. The H∞ 
FIR filter presented in [16] is obtained by repeatedly 
solving a finite horizon H∞ filtering problem. 
However, in practice it neither guarantees the H2 norm 
bound nor has independence from the initial state. H∞ 

FIR filter for signal reconstruction was considered 
[17]. However, that result is not applicable to state 
reconstruction problems. To the best of our knowledge, 
there exists no H∞ FIR filter for state reconstruction 
that guarantees the H∞ norm bound. In this paper, we 
reformulate the H2 FIR filter problem in terms of 
linear matrix inequalities (LMI) for the first time. H∞ 
FIR filter that guarantees the H∞ norm bound is 
proposed in terms of LMI for the first time. Finally, by 
combining those two results, mixed H2 / H∞ FIR filter 
will be presented.  

The proposed H2 / H∞ FIR filter is both unbiased 
and optimal by design for the given performance 
criterion. The phrase ‘by design’ means that the 
unbiased property and optimality are simultaneously 
built into the proposed FIR filter during its design. 
Actually, the unbiased property of the proposed FIR 
filter avoids the unnecessary large estimation error.  

This paper is organized as follows. In Section 2, 
preliminaries and the problem statement are presented. 
In Section 3, H2, H∞, and H2/H∞ FIR filtering 
problems are formulated in terms of linear matrix 
inequalities. In Section 4, a numerical example is 
given. Finally, the conclusions are presented in 
Section 5. 

Notation: Throughout the paper the superscript T 
represents matrix transposition and ∗ denotes the 
symmetric entries of a symmetric matrix, implied by 
symmetry. The matrix I denotes an identity matrix 
with appropriate dimensions. Rn denotes any real n -
dimensional linear vector space and m nR ×  is the set 
of all m n×  real matrices. The notation 0P >  
( 0P < ) means that P  is symmetric and positive-
definite (negative-definite).  

 
2. PROBLEM STATEMENT 

  
Consider the following linear discrete-time state 

space signal model 

1 ,
,

k k k k

k k k

x Ax Bu Gw
y Cx Dw
+ = + +

= +
   (2) 

where n
kx R∈  is the state, l

ku R∈  is the input, 
q

ky R∈  is the measured output, and p
kw R∈  is the 

disturbance input. In the case of no disturbance input, 
system (2) becomes 

1 ,
.

k k k

k k

x Ax Bu
y Cx
+ = +

=
   (3) 

The system in (3) will be called the nominal system.  
Conventional filters of IIR structure are of the 

following form: 

1ˆkx + ˆkAx= ˆ( ),k k kBu K y Cx+ + −   (4) 

where K is the filter gain matrix. Estimation error at 
step k is defined to be ˆ .k k ke x x= −  Define ( )KT z  
to be the transfer function from the disturbance input 
w to the estimation error e. Then, depending on 
estimation performance criterion, three filtering 
problems of the IIR type are formulated as follows: 
• H2 filtering problem: Find the filter (4) that 

minimizes 2( ) .KT z  

• H∞ filtering problem: Find the filter (4) that 
minimizes ( ) .KT z ∞  

• H2 / H∞ filtering problem: Find the filter (4) that 
minimizes ( )KT z ∞  subject to 2( )KT z β<  (or 

minimizes 2( )KT z  subject to ( )KT z β∞ < ). 
In a similar fashion to the IIR case we can 

formulate three different FIR filtering problems 
depending on the performance criterion. The aim of 
this paper is to develop design methods for FIR filters 
with a batch form 

1 1ˆk k kx HY LU− −= +    (5) 

as solutions to those three FIR filtering problems. H 
and L in (5) are the gain matrices of a linear filter 
represented by 

1 1

1 1

[ ],
[ ].

N N

N N

H H H H
L L L L

−

−
 

1kU −  and 1kY − are defined as 

1 1 1[ ] ,T T T T
k k N k N kU u u u− − − + −  (6) 

1 1 1[ ] .T T T T
k k N k N kY y y y− − − + −   (7) 

k iu −  and ,k iy −  where 1, , ,i N=  are the inputs 
and outputs, respectively, at time .k i−  It is noted 
that the estimate ˆkx  in (5) is a linear function of the 
finite number of inputs and measurements on the most 
recent time interval [ , 1],k N k− −  called the 
horizon. N, which is a positive integer, is a horizon 
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length.  
We require that the filter in (5) be independent of 

any a priori information about the horizon initial state, 
,k Nx −  by making a filter of FIR structure. 

Furthermore, we require an unbiased property that the 
FIR filter in (5) satisfies the following relation for the 
nominal system (3): 

ˆk kx x=  for any .k Nx −    (8) 

To determine the constraint required for (8) to be 
satisfied, denote the measurements on the most recent 
time interval [ , 1]k N k− −  in terms of the state kx  
at the current time k  as 

1 1 1( ) ,k N k N k N N kY C x B U G D W− − −= + + +  (9) 

where 

 1 1 1[ ] .T T T T
k k N k N kW w w w− − − + −  (10) 

,NC  ,NB  ,NG  ND  are constant matrices obtained 
as follows: 

2

1

,

N

N

CA

C
CA

CA

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

    (11) 

1 2

1 1

2

1

0
,0 0

0 0

N

N

NN

CA B CA B CA B

CA B CA B
B CA B

CA B

− − −

− − +

− +

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (12) 

1 2

1 1

2

1

0
,0 0

0 0

N

N

NN

CA G CA G CA G

CA G CA G
G CA G

CA G

− − −

− − +

− +

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (13) 

{ , , }.N
N

D diag D D D    (14) 

For a nominal system (3) we obtain, from (9), 
 

1 1 1 1ˆ .k k k N k N k kx HY LU HC x HB U LU− − − −= + = + +
 

Therefore, the constraints on H  and L  required to 
satisfy (8) are given by 

 , .N NHC I HB L= = −    (15) 

From (15), we rewrite the FIR filter in (5) as 

 1 1ˆ ( ), .k k N k Nx H Y B U HC I− −= − =  (16) 

The constraint NHC I=  will be called the unbiased 
constraint in the sense that it is an unbiased constraint 
for the nominal system (3) with zero disturbance, but 
may not be an unbiased constraint for the system (2) 
with nonzero disturbance input. 

Define TH (z) as the transfer function from the 
disturbance input w to the estimation error e of an FIR 
filter (16). Then we can formulate three FIR filtering 
problems as follows: 
• H2 FIR filtering problem: Find the filter (16) that 

minimizes 2( ) .HT z  

• H∞ FIR filtering problem: Find the filter (16) that 
minimizes ( ) .KT z ∞  

• H2/ H∞  FIR filtering problem: Find the filter (16) 
that minimizes ( )HT z ∞  subject to 2( )HT z β<  

(or minimizes 2( )HT z  subject to ( )HT z β∞ < ). 
In the next section, we present the formulation of the 
above FIR filtering problems in terms of LMIs. 

Remark 1: It is noted that A  should be 
nonsingular to obtain ,NC  ,NB  and .NG  In case of 
high-order systems, the system matrix may be a sparse 
matrix and hence singular. It seems that the restriction 
of A being nonsingular is somewhat strong. However, 
if the system matrix is obtained from sampled-time 
systems, then it is represented as ,cAA e Δ=  where Ac 
is the system matrix for the continuous-time system 
and Δ  is the sampling period. In that case, A is 
always nonsingular. 

 
3. H2/H∞ FIR FILTERING VIA LMIS 

 
3.1. Error dynamics of FIR filters 

As a starting point we derive the transfer function 
( ).HT z  The disturbance input kw  satisfies the 

following state model on 1kW −  

 1 ,k u k u kW A W B w−= +    (17) 

where 

0 0 0
0 0 0

,0
0 0 0
0 0 0 0

pN pN
u

I
I

A R
I

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0
0

.0 pN p
uB R

I

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

It follows from (9) that 

 1 1 1( ) .k N k N k N N kY B U C x G D W− − −− − = +  (18) 

Pre-multiply (18) by H. From (16), we obtain 
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 1ˆ ( ) .k k k N N ke x x H G D W −= − = +   (19) 

From (17) and (19), TH(z) is given by 

 1( ) ( )( ) .H N N u uT z H G D zI A B−= + −  (20) 
 

3.2. H2 FIR Filtering 
Given a system transfer function 
 

 
 

it is well-known that 2( )G z  is given by 

 2( ) ( ),TG z tr CPC=    (21) 

where P is the controllability Grammian given by 

0
( ) ,i T T i

i
P A BB A

∞

=
=∑  

and obtained as the solution to the following 
Lyapunov equation 

0.T TAPA P BB− + =  

Therefore, we have the following theorem for the H2 
FIR filter: 

Theorem 1: Assume that the following LMI 
problem is feasible: 

,
min ( )
F W

tr W  subject to 

 0( )( )
0,N NW FM H G D

I
⎡ ⎤+ +

>⎢ ⎥∗⎣ ⎦
  (22) 

where 1
0 ( )T T

N N NH C C C−=  TM  is the bases of the 

null space of .T
NC  Then the optimal gain matrix of 

the H2 FIR filter of the form (20) is given by 

0.H FM H= +  

Proof: The constraint NHC I=  is required for the 
FIR filter to be of the form (16). H2 norm of the 
transfer function TH(z) in (20) is obtained by 

2
2( ) ( ( ) ( ) ),T T

H N N N NT z tr H G D P G D H= + +  

where
0

( ) .i T T i
u u u u

i
P A B B A

∞

=
=∑  Because 0i

uA =  for 

,i N≥  we obtain 

1

0 0
( ) ( ) .

N
i T T i i T T i
u u u u u u u u

i i
P A B B A A B B A I

∞ −

= =
= = =∑ ∑  

Therefore 
2
2( ) ( ( )( ) ).T T

H N N N NT z tr H G D G D H= + +  

Introduce a matrix variable W such that 

( )( ) .T T
N N N NW H G D G D H> + +  

Then 2
2( ) ( ) .Htr W T z>  By the Schur complement, 

(24) is equivalent to 

 
( )

0.N NW H G D
I

⎡ ⎤+
>⎢ ⎥∗⎣ ⎦

   (25) 

Therefore, by minimizing tr(W) subject to the equality 
constraint NHC I=  and the above LMI, we obtain 
the optimal gain matrix H of the H2 FIR filter. The 
equality constraint NHC I=  can be eliminated by 

computing the null space of .T
NC  All solutions to the 

equality constraint NHC I=  are parameterized by 

 0 ,H FM H= +     (26) 

where F is a matrix containing the independent 
variables. Replacing H by 0 ,FM H+  the LMI 
condition in (25) is changed into (22). This completes 
the proof.                                   

Remark 2: T
N NC C  should be nonsingular in order 

to obtain 0.H  This, in turn, implies that NC  should 
be full column rank. Assuming the nonsingularity of 

,A  NC  is full column rank if and only if N
NC A  is 

full column rank. N
NC A  is represented as 

1

.N
N

N

C
CA

C A

CA −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

If ( , )A C  is observable, N
NC A  is full column rank 

if .N n≥  This signifies that the horizon length N  
greater than n guarantees H0 to exist. 

Remark 3: Recalling that the square of the H2 
norm is the error variance due to white noise with unit 
intensity, we show that (23) holds as follows: 

2
2

1 1

( )

{ ( ) ( )}

( { ( ) ( )})

( ( ) { }( ) )

( ( )( ) ).

H

T

T

T T T
N N k k N N

T T
N N N N

T z

E e k e k

tr E e k e k

tr H G D E W W G D H

tr H G D G D H
− −

=

=

= + +

= + +

 

1( ) ( ) ,
0

A B
G z C zI A B

C
−⎡ ⎤

= −⎢ ⎥
⎣ ⎦
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Define 2γ
∗  to be the 2

2( )HT z  due to the optimal H2 

FIR filter and define NΞ  as 

( )( ) .T
N N N N NG D G DΞ + +  

The following theorem states that the optimal H2 FIR 
filter can be obtained analytically. 

Theorem 2: The optimal H2 FIR filter gain is given 
analytically as 

1 1 1( )T T
N N N N NH C C C− − −= Ξ Ξ  

and therefore we have 

 2 ( ).T
Ntr H Hγ ∗ = Ξ    (27) 

Proof: Construct a Lagrangian as 

( ) ( ( )),T
N NJ tr H H tr HC I= Ξ + Λ −  

where n nR ×Λ∈  is a Lagrange multiplier. It is clear 
from (23) that H  minimizing the above Lagrangian 
is the gain matrix of the optimal H2 FIR filter of the 
form (16). For optimality, we require that 

 2 0,T T
N N

J H C
H
∂

= Ξ + Λ =
∂

  (28) 

 ( ) 0.T
N

J HC I∂
= − =

∂Λ
   (29) 

From (28), we obtain  

 2 .T
N NC HΛ = − Ξ    (30) 

Pre-multiply 1T
N NC −Ξ  to the left of both sides in (30). 

Using NHC I= , we have 
 

1 12 2 2 .T T T T T
N N N N N N NC C C C H C H I− −Ξ Λ = − Ξ = − = −

 

Therefore 1 12( )T
N N NC C− −Λ = − Ξ  and 

 

1 1 1 11 ( ) .
2

T T T T
N N N N N N NH C C C C− − − −= − Λ Ξ = Ξ Ξ  

 

Substituting H  above into (23) yields relation (27). 
This completes the proof.                       

 
3.3. H∞ FIR Filtering 

For the system transfer function 
 

 
 

it is well known from the bounded real lemma that, 
given 0,γ > the following two conditions are 
equivalent: 

(1) ( ) .G z γ∞ <  
(2) There exists an 0X >  such that 

0

0
0.

T

T

X XA XB

X C

I D
I

γ
γ

−⎡ ⎤
⎢ ⎥
∗ −⎢ ⎥ <⎢ ⎥∗ ∗ −⎢ ⎥

⎢ ⎥∗ ∗ ∗ −⎣ ⎦

 

From this, we obtain the following theorem for the 
optimal H∞ FIR filter.  

Theorem 3: Assume that the following LMI 
problem is feasible:  

,
min
F X

γ∞ subject to  

0

0

0 ( ) ( ) 0,
0

u u
T T

N N

X XA XB

X G D FM H
I

I
γ

γ
∞

∞

−⎡ ⎤
⎢ ⎥
∗ − + +⎢ ⎥ <⎢ ⎥∗ ∗ −

⎢ ⎥
∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 

where 1
0 ( )T T

N N NH C C C−=  and TM  is the basis of 

the null space of .T
NC  Then, the optimal gain matrix 

of the H∞  FIR filter of the form (16) is given by 

0.H FM H= +  

Proof: From the bounded real lemma, the condition 
( )HT z γ∞∞ <  is equivalent to the condition under 

which there exists 0X >  such that 

0

0 ( ) 0.
0

u u
T T

N N

X XA XB

X G D H
I

I
γ

γ
∞

∞

−⎡ ⎤
⎢ ⎥
∗ − +⎢ ⎥ <⎢ ⎥∗ ∗ −

⎢ ⎥
∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 

The equality constraint NHC I=  can be eliminated 
in exactly the same way as in H2 FIR filter. This 
completes the proof.                           

 
3.4. H2 / H∞ FIR Filtering 

From the previous two subsections, the formulation 
of the H2 / H∞ FIR filtering problem via LMIs is 
obvious. Therefore, we obtain the following theorem 
for the H2 / H∞ FIR filter: 

Theorem 4: Given 1,α >  assume that the 
following LMI problem is feasible: 

, ,
min

W X F
γ∞  subject to  

0( )( )
0,N NW FM H G D

I
⎡ ⎤+ +

>⎢ ⎥∗⎣ ⎦
 

1( ) ( )
A B

G z C zI A B D
C D

−⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
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0

0

0 ( ) ( ) 0,
0

u u
T T

N N

X XA XB

X G D FM H
I

I
γ

γ
∞

∞

−⎡ ⎤
⎢ ⎥
∗ − + +⎢ ⎥ <⎢ ⎥∗ ∗ −

⎢ ⎥
∗ ∗ ∗ −⎢ ⎥⎣ ⎦

 

where 1
0 ( )T T

N N NH C C C−=  and TM  is the basis of 

the null space of .T
NC  Then, the gain matrix of the 

H2 / H∞ FIR filter of the form (16) is given by 

0.H FM H= +  

Proof: The proof is obvious and is omitted. 
The above H2 / H∞ FIR filtering problem allows us 

to design the optimal FIR filter with respect to the H∞ 
norm while assuring a prescribed performance level in 
the H2 sense. By adjusting 0,α >  we can trade off 
the H∞ performance against the H2 performance. 

 
4. NUMERICAL EXAMPLE 

 
To illustrate the characteristics and validity of the 

proposed FIR filter, a numerical example is presented 
for a linear discrete-time invariant state space model 
taken from [3]. 

1
0.9950 0.0998 0.1
0.0998 0.9950 0.1

1 0
,

1 0
[1 0] [0 1] ,

k k k
k

k

k k k

x x u

w

y x w

δ+
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥− + ⎣ ⎦⎣ ⎦
⎡ ⎤

+ ⎢ ⎥
⎣ ⎦

= +

 

where kδ  is an uncertain model parameter. Assum-
ing 0,kδ =  we obtained H2 FIR filters, H∞ FIR 
filters, and H2 / H∞ FIR filters with 1.05α =  for 
different horizon lengths ( 3,4, 10)N =  using the 
results in Theorems 1, 3, and 4, respectively. Fig. 1 
compares the H2-norms of H2 FIR filters and H2 / H∞ 
FIR filters with that of H2 IIR filters. Similarly, Fig. 2 
compares the H∞-norms of H∞ FIR filters and H2 / H∞ 
FIR filters with that of H∞ IIR filters. Both figures 
show a similar trend: norms of FIR filters decrease as 
the horizon length increases. This means that the 
performances of FIR filters improve with the horizon 
length. It is naturally expected that the norm of FIR 
filters will approach the norm of IIR filters as the 
horizon length approaches infinity. The H2-norms of 
H2 / H∞ FIR filters are always greater than that of H2 
FIR filters. Similarly, the H∞-norms of H2 / H∞ FIR 
filters are always greater than that of H∞ FIR filters. 
This is because H2 / H∞ FIR filters are obtained by 
taking both performance criteria into account.  

From these figures, we see that the performances of 
FIR filters can’t be better than those of IIR filters in 
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Fig. 1. H2-norms with respect to different horizon 
lengths. 
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Fig. 2. H∞-norms with respect to different horizon 
lengths. 
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Fig. 3. Estimation error in 1.x  
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normal situations. However, it is noted that FIR filters 
can be a better choice than IIR filters in some special 
cases. One notable case is the situation where the 
system is subject to temporary parameter variation. As 
mentioned previously, FIR filters are known to be 
more robust than IIR filters against temporary 
modeling uncertainties because they utilize only finite 
measurements on the most recent horizon. To 
illustrate this feature, we have designed an H2 / H∞ 
FIR filter with 10,N =  1.05,α =  and 0kδ =  and 
applied it to a system that is subject to temporary 
parameter variation as follows: 

0.1, 100 150
0, otherwise.k

k
δ

− ≤ ≤⎧
= ⎨
⎩

 

Fig. 3 compares the estimation error in 1x  of the H2 / 

H∞ FIR filter with those of the H2 and the H∞ filters 
of IIR structure where the disturbance input kw  is 
given by 

30

30

0.1 .

k

k k

e
w

e

−

−

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Therefore wk is an exponentially decreasing signal. It 
is noted that the H∞ IIR filter demonstrates superior 
performance for the interval 0 100.k≤ ≤  This is 
because kw  is deterministic disturbance rather than 
stochastic noise. It is noted that the performance of the 
H2 / H∞ FIR filter for 0 10k≤ ≤  is notably inferior. 
This is because the FIR filter does not have enough 
data for normal operation. Usually, data corresponding 
to the horizon length are required for normal operation. 
For the time interval 100 150,k≤ ≤  the system is 
subject to temporary parameter variation and this in 
turn leads to temporary modeling uncertainty. The 
estimation error of the H2 / H∞ FIR filter is smaller 
than that of the IIR filters for this interval. For 

150k ≥  where there is no modeling uncertainty and 
kw  is very small, the convergence speed of H2 / H∞ 

FIR filter to the true state of the system is faster than 
IIR filters. This example clearly shows the relative 
merits of proposed FIR filters compared with IIR 
filters. 

 
5. CONCLUSIONS 

 
In this paper, a new type of filter called the H2 / H∞ 

FIR filter is proposed for discrete-time state space 
signal models. The filtering problem is formulated in 
terms of linear matrix inequalities. The proposed filter 
has many desirable properties, that is, the filter is 

linear with the most recent finite measurements and 
inputs, does not require a priori information of the 
horizon initial state, and has the unbiased property for 
zero disturbance. Furthermore, due to the FIR 
structure, the H2 / H∞ FIR filter is believed to be 
robust against temporary modeling uncertainties or 
numerical errors, while other IIR filters, such as 
Kalman filters and H∞ filters, may show poor 
robustness in these cases. The proposed H2 / H∞ FIR 
filter will be useful for many signal processing 
problems where signals are represented by state space 
models. In the current paper, we assume that a system 
matrix is nonsingular. Study on the FIR filters that 
does not require the nonsingularity of system matrices 
will be a challenging future work. 
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