
International Journal of Control, Automation, and Systems (2009) 7(4):674-680 
DOI 10.1007/s12555-009-0419-x 

 

http://www.springer.com/12555

Swing-up Control for an Inverted Pendulum with Restricted Cart Rail Length 
 

Ji-Hyuk Yang, Su-Yong Shim, Jung-Hun Seo, and Young-Sam Lee* 

 

Abstract: In this paper, we propose a new swing-up strategy for cart inverted pendulums with 

restricted rail length. The proposed swing-up strategy is derived from a new Lyapunov function. The 

Lyapunov function is defined as the sum of the square of the pendulum energy and the weighted 

square of the cart’s velocity. The resulting swing-up strategy is represented in a compact form and has 

two design parameters. By adjusting these design parameters, we can affect the swing-up strategy such 

that the restriction on the rail length is satisfied. We also provide a state-dependent transformation to 

obtain voltage input to a DC motor required to generate the cart’s acceleration obtained from the 

proposed swing-up strategy. Finally, we illustrate the performance of the proposed swing-up law 

through simulation and experiments. It is shown that there is quite good correspondence between 

theory and experiments. 

 

Keywords: Cart inverted pendulum, restricted rail length, state-dependent transformation, swing-up 

strategy. 

 

1. INTRODUCTION 

 

Pendulums are widely used in nonlinear control 

education and research as benchmark examples of 

underactuated mechanical systems. Extensive research 

can be found on the control of inverted pendulums and, 

in particular, swing-up control of inverted pendulums has 

attracted much attention. A fundamental method of 

swinging up cart pendulum systems is based on energy 

methods [1,2]. This method works well when the 

available cart rail length is unlimited, which is not the 

case with the usual cart pendulum systems. 

In the literature available, there are several solutions 

for swing-up stabilization of cart pendulums with a 

restricted rail. Wei et al. [3] presented a nonlinear control 

strategy by decomposing the control law into a sequence 

of steps. Chung and Houser [4] proposed a nonlinear 

state feedback control law to regulate the cart position as 

well as the swinging energy of the pendulum. Lozano et 

al. [5] used a Lyapunov function to derive a swing-up 

law taking restricted rail length into account. The 

Lyapunov function is given by the sum of the squares of 

mechanical energy, cart position and cart velocity. The 

resultant swing-up law has four parameters, which 

requires a trial and error tuning procedure. Furthermore, 

the swing-up is relatively sluggish as illustrated in 

simulations and experiments in the paper. Zhao and 

Spong [6] applied a hybrid-control strategy, which 

globally asymptotically stabilizes the system for all 

initial conditions. Their swing-up strategy consists of 

switching between bang-bang controllers and requires a 

lot of parameters to be decided upon. Their method does 

not take the rail length restriction into account. 

Chatterjee et al. [7] introduced the concept of “potential 

well” in order to consider the cart rail length limitation. 

The well is constructed in such a way that the cart 

experiences a repulsive force as it approaches the 

boundaries in the neighborhood of the limitations. The 

simulation and experimental results given in the paper 

show that their method is effective. However, a major 

problem with their method is to design suitable potential 

wells and coefficients using intuition and time-

consuming iterations. Five coefficients should be 

designed by trial and error, which is not easy. A fuzzy 

swing-up algorithm was applied in [8]. However, it is 

difficult to prove the stability of the control systems 

based on a fuzzy algorithm. Furthermore, trial-and-error 

approaches should be taken to complete the fuzzy 

algorithm. Swing-up control of a rotary inverted 

pendulum known as a Furuta pendulum has also been 

presented in [9]. The method presented in [9] is obtained 

by applying Fradkov’s speed-gradient method to a 

dimension 4 model of the system, while the existing 

method [2] is based on a dimension 2 model.  

In this paper, a new swing-up strategy is proposed 

based on a new Lyapunov function, which is given by 

the sum of the square of mechanical energy and weighted 

square of the cart’s velocity. The proposed control law is 

represented in a simple form when compared to existing 

methods. It has only two design parameters and thus is 

easy to tune and is clearly an advantage over existing 

methods which require four or more parameters to be 

tuned. Stability is guaranteed irrespective of the choice 

of design parameters as long as the values are strictly 

positive. Furthermore, the rail length limitation can be 
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taken into account by adjusting the design parameters. 

The swing-up time of the proposed method is much 

shorter than that of [5] and is comparable to that of [7]. 

This paper is organized as follows: In Section 2, a 

mathematical model of a cart inverted pendulum is 

provided. In Section 3, a new swing-up strategy is 

proposed and its stability is proved. In Section 4, a state-

dependent transformation is proposed in order to 

implement the proposed swing-up strategy in cart 

pendulum systems which utilize a DC motor as an 

actuator. In Section 5, simulation and experimental 

results are provided. Finally in Section 6, conclusions are 

made.  

 

2. MODEL OF CART INVERTED PENDULUMS 

 

Fig. 1 shows the conceptual diagram of a cart pendu-

lum system. Applying Lagrange’s formulation, we obtain 

the following differential equations which govern the 

movement of the pendulum system: 

(cos ) sin 0,
p
I ml x mglθ θ θ+ − =

�� ��  (1) 

2( ) (sin ) (cos ) ,M m x ml ml bx Fθ θ θ θ+ − + + =
� ���� �  (2) 

where 2
,

p p p
I I ml I= +  is the moment of inertia of a 

pendulum with respect to the center of gravity, M the 

mass of a cart, m the mass of a pendulum, l  the length 

of the pendulum from the pivot to the center of gravity, 

g  the acceleration of gravity, F  the force exerted on 

the cart. The angular displacement θ  and the linear 

displacement x  are depicted in Fig. 1 We do not 

provide a detailed derivation procedure of the model 

because the modeling procedure is well known. 

 

3. STABILIZING SWING-UP STRATEGY 

 

From (1), if 0x =��  or equivalently x�  is constant, the 

pendulum movement is governed by the differential 

equation  

sin 0.
p
I mglθ θ− =

��  (3) 

As in [2], we define the energy of the pendulum as 

follows:  

21
(cos 1).

2
p p

E I mglθ θ= + −
�  

It is mentioned that trajectories ( , )θ θ�  that are 

solution to the differential equation (3) construct orbits 

satisfying constant.
p

E =  Fig. 2 depicts orbits for 

different values of .

p
E  Each orbit suffices to be an 

invariant set because all solutions to (3) with initial 

conditions in the orbit remain in the orbit.  has its 

minimum value of 2mgl−  at the points ( , )θ θ =
�  

( ,0),π±  denoted by black circles in Fig. 2. Those points 

correspond to the stable equilibrium of the differential 

equation (3). We are especially interested in an orbit 

represented by 0,
p

E =  i.e., 

21
(cos 1) 0

2
p
I mglθ θ+ − =

�  (4) 

because 
p

E  is zero when the pendulum is in the upright 

position. See the orbit drawn in a solid line in Fig. 2. 

Points denoted by black squares in Fig. 2 correspond to 

the upright position or unstable equilibrium. Therefore, if 

a swing-up strategy can make x�  converge to a constant 

and 
p

E  approach zero, the state trajectory ( , )θ θ�  will 

approach the orbit represented by (4), which implies that 

the pendulum approaches the upright position as time 

passes. In order to balance the pendulum at the upright 

position, the control is switched to a local linear 

controller that guarantees local asymptotic stability. 

Since the rail length is restricted, the most appropriate 

constant value which x�  converges to should be zero. 

Otherwise, the swing-up strategy is very likely to violate 

the rail length restriction during its swing-up action. In 

order to make 
p

E  and x�  approach zero, we propose a 

Lyapunov function candidate as follows:  

2 21
( ),

2
p

V E ml xλ= + �  (5) 

where 0λ >  is a design parameter. In order to derive a 

swing-up strategy, we first compute the derivative of V  

with respect to time as follows: 

F

x

θ

l

m

M

b

rail

cart

pendulum

center of gravity

Fig. 1. The conceptual diagram of a cart pendulum

system. 
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p

E =constant. 
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[ sin ]

cos

( cos ).

p p

p p

p

p

dV
E E ml xx

dt

E I mgl ml xx

E ml x ml xx

xml E x

λ

θθ θθ λ

θθ λ

θθ λ

= +

= − +

= − +

= − −

� ���

��� � ���

��� ���

��� �

 

It is mentioned that (1) is used in order to replace the 

term 
p
I θ��  in the above derivation. We consider the 

acceleration of a cart as a control variable, that is, u x= ��  

as in [2]. Let us take the control 

( cos ),
a p

u u E xθθ λ= −
� �  (6) 

where 0
a

u >  is a design parameter. Then /dV dt  

reduces to 

2( cos ) .
a p

dV
mlu E x

dt
θθ λ= − −
� �  (7) 

If V  converges to zero, then 0
p

E →  and 0.x→�  

This, in turn, implies that the trajectory of a pendulum 

approach the orbit given by (4). Switching to a local 

linear controller when the pendulum approaches the 

upright position fulfills the swing-up control. However, it 

is noted that / 0dV dt ≤  because the term ( cos
p

E θθ�  

)xλ− �  can be zero in some cases. Because /dV dt  is 

just a negative semidefinite, we need to prove that V 

converges to zero. The following theorem provides this 

proof. 

Theorem 1: Consider the inverted pendulum system 

represented by (1) and (2). If the acceleration of the cart 

is given by (6) for strictly positive constants u
a
 and ,λ  

then the solution of the closed-loop system with all initial 

state conditions other than ( , ) ( ,0)θ θ π= ±�  converges to 

the invariant set M represented by the orbit correspond-

ing to 0
p

E =  with 0.x =�  

Proof: The stability is based on LaSalle’s invariance 

theorem [10]. In order to apply LaSalle’s theorem we 

need to define a compact (closed and bounded set) Ω  

with the property that every solution of the system given 

by (1) and (2) which starts in Ω  remains in Ω  for all 

future time. Since ( , , )V xθ θ� �  in (5) is a non-increasing 

function from (7), then ,θ  ,θ�  and x�  are bounded. 

The set Ω  is defined as 

3{( , , ) | ( , , ) ( (0), (0), (0))}.x V x V xθ θ θ θ θ θΩ = ∈ ≤R� � �� � �  

Therefore, the solutions of the closed-loop system 

remain inside a compact set .Ω  Let Γ  be the set of all 

points in Ω  such that ( , , ) 0.V xθ θ =
� �  Let M  be the 

largest invariant set in .Γ  LaSalle’s theorem ensures 

that every solution starting in Ω  approaches M  as 

.t →∞  Let us now compute the largest invariant set 

M  in .Γ  All points in Γ  satisfies 0,V =
�  which 

corresponds to ( cos ) 0.
p

E xθθ λ− =
� �  Since ,M ⊂ Γ  

all points in M  also satisfies ( cos ) 0.
p

E xθθ λ− =
� �  

Since all solutions starting in M  remain in M  by 

definition, the acceleration u  also remains as zero in 

M  from (6) and thus the closed-loop system satisfies 

the differential equation (3). As mentioned previously, 

solutions to (3) are represented by orbits satisfying 

constant,
p

E =  each of which suffices to be a invariant 

set. We will show that the orbit represented by 0
p

E =  

and 0x =�  is the largest invariant set .M  We will 

consider two cases. 

• Case a: cos 0
p

E θθ =
�  and 0.x =�  

cos 0
p

E θθ =
�  implies that 0

p
E =  or cos 0θθ =

�  

with 0.
p

E ≠  The set of points satisfying 0
p

E =  

corresponds to the orbit given by (4) and thus suffices to 

be invariant. cosθθ�  cannot remain zero around any 

orbit given by ,
p

E c=  where c  is not zero. The only 

exception is the case when 2
p

E mgl= −  which 

corresponds to ( , ) ( ,0).θ θ π= ±�  This implies that 

( , ) ( ,0)θ θ π= ±�  can be an invariant set. However, the 

theorem excludes cases where the initial condition starts 

from ( , ) ( ,0),θ θ π= ±�  Therefore, the orbit 

corresponding to 0
p

E =  is the biggest invariant set for 

Case a. 

• Case b: cos ,
p

E x cθθ λ= =
� �  where c is a constant 

which is not zero. 

The reason why we take x�  to be constant is because 

0u x= =��  in M  from (6). As already mentioned, all 

solutions to (3) correspond to orbits represented by 

constant.
p

E =  However cosθθ�  cannot remain con-

stant around any specific orbit. Therefore, cos
p

E θθ�  

cannot remain constant around any specific orbit. This 

implies that there is no invariant set for Case b.  

From the above discussion, we can conclude that the 

biggest invariant set M  is the orbit represented by 

0
p

E =  with 0.x =�  Since we have found the biggest 

invariant set ,M  the remaining proof follows from 

LaSalle’s theorem. This completes the proof. 

Remark 1: Lozano’s method [5] requires four design 

parameters to be tuned. It is reported that a major 

problem with the method in [7] is to design suitable 

potential wells and coefficients using intuition and time-

consuming iterations. The fuzzy-based method in [8] 

requires a trial-and-error procedure to make a rule table 

for implementation. As is widely known, this procedure 

requires a lot of time and expertise. When compared to 

existing strategies, the most prominent advantage of the 

proposed method is that it has only two design 

parameters and thus is very easy to tune. 

Remark 2: A swing-up strategy which utilizes the 
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idea of letting the pendulum trajectory approach the orbit 

given by [4] was previously considered in [5]. The 

method in [5] is also based on a Lyapunov function, 

which includes the term 2
x  in addition to the term 2

.x�  

It is regarded that the paper intends to make x  

converge to zero in addition to restricting it. However, 

the experimental results given in [5] show that x never 

converge to zero during the swing-up. Instead, x is biased 

to one side from the center. Furthermore, the swing-up 

time is very long. We don’t need x to converge to zero 

for the swing-up. Instead, we want to restrict .x  The 

cart’s linear displacement x(t) is given by x(t) = 

0
( )

t

x dτ τ∫ �  because the cart starts from the center of the 

rail. From this, we see that we can restrict x  by 

minimizing 2
.x�  Therefore, we don’t include the term x2 

in the Lyapunov function. Even though the Lyapunov 

function is similar to that in [5], the obtained control law 

is totally different from that of [5]. Furthermore, the 

proposed strategy has several features when compared to 

the method of [5]. First, the proposed control law is 

simple and has only two design parameters, while the 

control law in [5] requires four design parameters. This 

leads to easy tuning of design parameters as mentioned 

in Remark 1. Second, the stability procedure of the 

proposed method is much simpler. Third, the proposed 

method has a faster convergence rate. Finally, the 

proposed method shows good correspondence between 

simulation and experiment while the method in [5] does 

not. The last two features mentioned will be illustrated 

through simulations and experiments later in this paper. 

Remark 3: Explicit representation of the relation 

between the parameter and the maximum value of 2
x  is 

hardly available. Instead, we can say that increasing the 

parameter λ  will reduce the value of 2
.x�  This, in turn, 

will reduce .x  This feature is well illustrated through 

the simulations and experiments of this paper. 

 

4. STATE-DEPENDENT TRANSFORMATION 

FOR IMPLEMENTATION 

 

The proposed swing-up strategy utilizes the accelera-

tion of the cart, as given in (6), in order to swing a 

pendulum up. The inverted pendulum considered in this 

paper uses a DC motor as an actuator to move the cart. 

Therefore, the voltage input to a DC motor is a more 

appropriate control variable than the acceleration. We 

propose a state-dependent transformation in order to 

obtain a voltage input to a DC motor required to generate 

the acceleration given in (6). In order to derive the 

transformation, we first write the DC motor equation as 

follows:  

,
m m m m m
I B T Tθ θ+ = −

�� �  (8) 

where 
m

θ  is the rotor angular displacement, 
m
I  the 

rotor inertia, Bm a viscous-friction coefficient, Tm the 

torque generated by a motor, and T the load torque that is 

used to move the cart through a timing pulley and a belt. 

The motor torque can be represented, as explained in 

[11], as 

,

b c

m m a m m

m m

K V
T K i K

R R
θ

 
= = − + 

 

�  (9) 

where ia is the winding current, Km the torque constant, 

Kb the back-EMF constant, and Vc the voltage applied to 

a DC motor. The lab-built inverted pendulum system 

used in this paper utilizes a timing pulley and a belt in 

order to convert the rotational movement of a rotor to the 

translational movement. Let r  be the radius of a timing 

pulley. Then x  and 
m

θ  are related as follows: 

, .
m m

x r x rθ θ= =
� ��� ��  

Utilizing the above relation, the motor torque given in 

(8) can be rewritten into 

.

m b m

m c

m m

K K K
T x V

R r R
= − +�  (10) 

From (8) and (10), we can represent the load torque as 

follows: 

.

m m m b m

c

m m

I B K K K
T x x V

r r R r R

 
= − − + + 

 
�� �  

The force F  exerted on the cart is given by 

2 2 2
.

m m m b m

c

mm

I B K K KT
F x x V

r R rr r R r

 
= = − − + + 

 
 

�� �  (11) 

Substituting F  given in (11) into (2), we have the 

following dynamical equation: 

2

2

2 2

(sin ) (cos )

.

m

m m b m

c

mm

I
M m x ml ml

r

B K K K
b x V

R rr R r

θ θ θ θ
 

+ + − + 
 

 
+ + + = 
 
 

� ����

�

 (12) 

From (1) and (12), we obtain 

1 2 3 4

5

( )
,c

V
x

Λ −Λ Λ +Λ
=

Λ
��  (13) 

where 

2 2

1

2

2

3 2 2

4

2

5 2

sin cos ,

,

sin ,

,

( cos ) .

p

m m b

m

m

m

m
p

m l g

I

B K K
b x ml

r R r

K

R r

I
ml I M m

r

θ θ

θθ

θ

Λ =

Λ =

 
Λ = − + + + 

 
 

Λ =

 
Λ = − + + 

 

��  
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From (13), 
c

V  and x��  are related as follows: 

5 1 2 3

2 4

.

c

x
V

Λ −Λ +Λ Λ
=

−Λ Λ

��
 (14) 

Since ,x u=��  the transformation is finally summarized 

into 

5 1 2 3

2 4

.

c

u
V

Λ −Λ +Λ Λ
=

−Λ Λ
 (15) 

Fig. 3 depicts the proposed control method through a 

block diagram. Firstly, the cart’s acceleration needed to 

swing up the pendulum is obtained from the proposed 

swing-up strategy and the obtained acceleration is fed to 

a state-dependent transformation in order to output the 

voltage value required to generate the required accelera-

tion. Because the voltage to a DC motor is subject to 

saturation, i.e., 
max max

,
c

V V V− ≤ ≤  we need to decide 

design parameters 
a

u  and λ  such that the resulting V
c
 

does not violate the voltage limit. Simulation study can 

be used for this purpose. 

 

5. SIMULATION AND EXPERIMENT 

 

In this section we provide simulation and experimental 

results in order to support the proposed swing-up 

strategy. Fig. 4 shows a lab-built cart pendulum system 

used in the experiment. The rail length is 0.45± m. The 

model parameters are given in Table 1. It is mentioned 

that some parameters that are not easy to obtain are 

assumed to have zero values. For example, see ,b  ,
m
I  

and 
m

B  in Table 1. Even though we disregard those 

parameters, experimental results show that the proposed 

strategy still works well. Same parameter values were 

used in simulation study. Control strategy assumes that it 

switches from the nonlinear swing-up control law given 

in (6) to a local linear controller if 8 .θ <
�  We took 

5
a

u =  and performed simulation for three different 

values of .λ  Figs. 5 and 6 compare the simulation 

results for the following initial condition: 

0, 0, 0.99 , 0.x x θ π θ= = = − =
��  

It is observed that the bigger the value of λ  we use, 

the greater the number of swings needed to swing-up the 

pendulum to the upright position while the cart’s 

u

c
V

x

x

θ

θ

 
 
 
 
 
 

�

�

Fig. 3. Proposed control block diagram. 

 

 

Fig. 4. Lab-built cart inverted pendulum. 

 

Table 1. Model parameters of the lab-built inverted 

pendulum. 

Parameter Value 

pI  0.0267 kgm2 

M 0.711 kg 

M 0.209 kg 

l 0.326 m 

B 0 

I
m
 0 kgm2 

B
m
 0 

r 0.0194 m 

K
m
 0.257 kgm2 

R
m
 2.32 Ω 
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Fig. 5. Simulation result θ  (dotted: λ =0.1, dashdot:

λ =2, solid: λ =5). 
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Fig. 6. Simulation result x  (dotted: λ =0.1, dashdot:

λ =2, solid: λ =5).
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displacement remains in the smaller range. It is seen that 

the cart’s displacement range for 0.1λ =  is beyond the 

rail limitation. This simulation example gives us a guide 

in deciding the design parameter .λ  Fig. 7 shows the 

phase portrait drawn from the simulation result for the 

case of 5.λ =  It is shown that the phase portrait 

approaches the orbit given by 0
p

E =  as time goes. 

As mentioned in Remark 2, Lozano’s method [5] has a 

slow convergence rate. Simulation results given in [5] 

report that their strategy takes almost 120 seconds before 

switching to a linear controller. On the other hand, the 

proposed strategy takes less than 25 seconds for all three 

cases, which supports the notion that the proposed 

method has a faster convergence rate than the method 

shown in [5]. 

For comparison purposes, we performed experiments 

for two different values of .λ  Unlike the simulation 

where the initial condition can be excatly specified, we 

hit the pendulum a little bit in the beginning to avoid the 

point ( , ) ( ,0).θ θ π= ±�  The experimental results given in 

Figs. 8 and 9 show the close resemblance with the 

simulation results, as mentioned in Remark 2. The 

oscillation of the cart’s displacement after switching to a 

linear controller stems from the backlash of a gear used 

in the DC motor. Note that, for 5,λ =  the cart’s 

displacement remains in the range ± 0.1m during swing-

up. Since the rail length is ± 0.45m, the restriction on 

the rail length is well satisfied by the proposed swing-up 

strategy. Fig. 10 shows the phase portrait drawn from the 

experimental results for the case of 5.λ =  From 

simulation and experiment, we see that we can satisfy the 

rail length limitation by adjusting a design parameter .λ  

 

6. CONCLUSIONS 

 

In this paper, we proposed a new swing-up strategy for 

inverted pendulums with restricted cart rail length. The 

proposed swing-up strategy is represented in a simpler 

form than existing swing-up strategies. The main 

advantage of the proposed method is that it has just two 

design parameters and thus is easy to tune. The cart’s 

acceleration is considered as the control variable in the 

proposed method. However, the cart’s acceleration 

cannot be directly manipulated. For implementation 

purposes, we provided a state-dependent transformation 

which yields voltage input to a DC motor required to 

generate the acceleration computed from the proposed 

swing-up strategy. The proposed swing-up strategy has 

been found to work well in simulation as well as 

JT JS JR JQ JP JO JN M N
JNM

JU

JS

JQ

JO

M

O

Q

S

U

NM

θxê~Çz

Ç
ç
í
=
θ
x
ê
~
Ç
L
ë
z

 

Fig. 7. Phase portrait for simulation: case of λ =5. 
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Fig. 8. Experiment result θ  (dashdot: λ =2, solid: λ

=5). 
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Fig. 9. Experiment result x  (dashdot: λ =2, solid: 

λ =5). 
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Fig. 10. Phase portrait for experiment result: case of λ

=5. 
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experimentally even though some model parameters are 
not carefully taken into account. We could affect the 
swing-up strategy by adjusting the design parameters 
such that the restriction on the rail length is satisfied. 
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