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Explicit Input and Output Feedback Control for Discrete-Time Systems 
 

Young Sam Lee, Mahmoud Tarokh, and Soohee Han* 

 

Abstract: A new form of output feedback control, referred herein as explicit input and output feedback 

control (EIOC), is proposed for linear discrete-time systems. Unlike the conventional dynamic output 

feedback control described by a state-space model, the proposed EIOC has a batch form, where current 

control is explicitly expressed using current and past system outputs and past control inputs over a re-

cent time horizon. The paper formulates the EIOC law and discusses its features and desirable charac-

teristics. The EIOC is shown to be equivalent to static output feedback control for an augmented sys-

tem. The coefficients of the EIOC are obtained to achieve the H∞ performance criterion. Finally, nu-

merical examples are presented to illustrate the effectiveness of the EIOC. 
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1. INTRODUCTION 

 

Dynamic controllers represented by state-space 

models have been the main type of output feedback 

controller used for developing control laws for linear 

discrete-time systems [1-7]. Controllers of this type have 

been designed to satisfy various criteria and objectives 

such as H2, H∞, pole assignment, etc. Such controllers, 

however, lack transparency, structural flexibility, and 

some desirable properties.  

They lack transparency because the state space control 

law does not show clearly how previous samples of 

system inputs and outputs contribute to present control 

since this information is embedded in the state equations. 

Structural inflexibility results from the fact that once the 

order of the controller is fixed, the number of free design 

parameters in the controller is also fixed. Existing fixed-

order state space controllers inherently have this 

structural inflexibility [3,9]. More importantly, state 

space controllers have the infinite impulse response (IIR) 

structure. According to the literature on filters, the finite 

impulse response (FIR) structure is more robust against 

temporary modelling uncertainties than the IIR structure 

[5-13]. Therefore, controllers of IIR type may be less 

robust than those of FIR type as illustrated in [6]. Finally, 

before dynamic controllers can be applied, a state space 

model must be set up, which is not a direct method of 

implementing the control law on a microprocessor or a 

computer.  
Motivated by the need for a controller that would not 

suffer from the above limitations, we introduce a new 
type of controller, which explicitly and directly uses the 
current and past outputs as well as past control inputs. 
We show how the proposed controller, referred to as 
explicit input and output feedback control (EIOC), 
avoids the above limitations.  

In Section 2, we introduce the structure of the EIOC 
and its properties, and show the equivalence of the EIOC 
to a static output feedback controller for an augmented 
system. The coefficients of the EIOC are obtained to 
meet the H∞ criterion in Section 3. Numerical examples 
are provided in Section 4 to illustrate the effectiveness of 
the EIOC. Finally, conclusions of the work are provided 
in Section 5. 

 

2. EXPLICIT INPUT AND OUTPUT FEEDBACK 

CONTROL 
 

Consider the discrete-time system described by 

1k k w k u k

k z k zw k zu k

k y k yw k
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+
= + + ,

= + + ,
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where ,

n

x∈ℜ ,
u
n

u∈ℜ ,

yn

y∈ℜ ,
z
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z∈ℜ  and 

w
n

w∈ℜ  

are the state, the control input, the measured output, the 

controlled output, and the exogenous disturbance input, 

respectively. 

The proposed EIOC has the following structure: 
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where Hi and Li are coefficients to be determined later, 

and Ny and Nu are referred to as the output horizon length 

and the control horizon length, respectively. It is noted 

that the total number of parameter to be chosen is Ny + 

Nu + 1. 

The proposed EIOC has some features which are not 

directly present or evident in the conventional dynamic 

controllers represented by state space models. These 

features are briefly mentioned below. 

(a) The EIOC of form (2) is intuitive and its practical 

implementation is straightforward. It just needs to store 

several past values of the measured outputs and control 

inputs, and compute the control law (2), which is very 

suitable for direct implementation on a microprocessor or 

a computer. The EIOC shows directly how the past 

measured outputs and control inputs contribute to the 

current control values, unlike the state space controllers. 

(b) The proposed EIOC can realize both IIR type 

controllers and FIR type ones in a unified framework. 

The latter type is known to be more robust to temporary 

uncertainties than the former type, and this aspect is 

illustrated later in Section 4. If neither of the horizon 

lengths is zero, an IIR type controller is obtained, as 

given in (2). If Nu is zero, the FIR type controller is 

obtained as follows: 

y

k

k k i i

i k N

u H y
−

= −

= .∑  (3) 

If both Ny and Nu are set to zero, the EIOC reduces to a 

well-known simple static output feedback control, i.e., 

0
.

k k
u H y=  

(c) The EIOC provides better design flexibility than 

the conventional state space controllers with respect to 

the tradeoff between controller complexity and controller 

performance. To elaborate, let us consider SISO systems. 

A full order controller obtained through a conventional 

method can be represented, after transformation into an 

observable or controllable canonical form, as follows: 

1k c k c k

k c k c k

A B y

u C D y

η η

η

+
= + ,

= + ,

 (4) 

where c
N

k
η ∈ℜ  is the state vector of the controller. 

The Nc-th order dynamic controller has Nc independent 

parameters in Ac, and another Nc parameters in either Bc 

or Cc, depending on whether the controller is in the 

observable or controllable canonical form, respectively. 

Finally there is one parameter in Dc giving a total of 2Nc 

+1 controller parameters. Recalling that all state space 

models can be transformed into control or observer 

canonical forms, we can easily see how many independ-

ent parameters are needed in terms of transfer functions. 

It follows then that only odd number of parameters is 

permitted in a controller represented by a state space 

model. As a result, we cannot freely choose a state space 

controller with a specific number of parameters to 

achieve the desired closed-loop performance without 

undue increase in the order (complexity) of the controller. 

On the other hand, the EIOC allows flexility in choosing 

an odd or even number of parameters in the controller. 

For example, choosing Nu = 1 and Ny = 2 enables us to 

obtain an EIOC with four parameters (Nu + Ny +1=4), 

which would have complexity and performance between 

first and second order state space controllers (2Nc + 1=3, 

2Nc +1=5). The EIOC also permits choosing any 

combination of past outputs or control inputs. This 

feature will be illustrated through numerical examples 

later in the paper. 

The EIOC in (2) can be written more compactly as 

0k k k k
u H y HY LU= + + ,  (5) 

where the gains are given by 
1 2

[ ]
yN

H H H H= �  and 

1 2
[ ],

u
N

L L L L= �  and Yk and Uk are defined by 

1 2 y
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As a first step toward the augmentation of EIOC with the 

system (1), we represent (5) as a dynamic system with 

states Uk and Yk as follows: 
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where Ey and Fy are defined as 
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Eu and Fu are similarly defined by replacing 
yNI  in Ey 

and Fy with ,
u

NI  respectively. It is noted that 1yN =  

gives 0
y yy N NE
×

=  and .
yy NF I=  Similarly 1uN =  

gives 0
u u

u N N
E

×
=  and .

u
u N

F I=  

Substituting the EIOC (5) into the system (1) and 

augmenting Uk and Yk with the system state vector using 

(6), we obtain the following closed-loop system: 

1k cl k cl k

k cl k cl k

A B w

z C D w

ξ ξ

ξ

+
= + ,

= + ,

 (7) 

where [ ]
T

T T T
k k k k

x Y Uξ =  is the state vector, and Acl, Bcl, 

Ccl, and Dcl are defined as 

0
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0
,

cl z zu y zu zu
C C D H C D H D L⎡ ⎤+⎣ ⎦�  (10) 

0cl zw zu yw
D D D H D+ .�  (11) 

Combining control gain matrices into a single matrix 

0
[H=K H ]L  and introducing the following 

equivalent open-loop system matrices 
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we can write the closed-loop systems matrices {A
cl
, B

cl
, 

C
cl
, D

cl
} in terms of the equivalent open-loop matrices 

{ , , , }w z zwA B C D  and the overall controller gain matrix 

K  as 

, ,

, .
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As a result, in order to find K  of the EIOC for the 

system (1), we have only to find a static output feedback 

controller, ,
k k

u y=K  for the following augmented 

system: 

1
,

,

,

k k w k u k

k z k zw k zu k

k y k yw k

w u

z w u

y w

ξ ξ

ξ

ξ

+
= + +

= + +

= +

A B B

C D D

C D

 

where [ ]
T T T T

k k kk
y Y Uy =  can be regarded as the 

measured output of the above system. This result enables 

us to use the existing static output feedback control 

design methods to obtain the EIOC. Furthermore, various 

performance criteria can be taken into account in 

designing the EIOC. In the next section, we will consider 

the H
∞
 performance criterion in designing the EIOC. 

 

Remark 1: In order to obtain an output feedback 

controller (3) of FIR type, we have only to set L to zero. 

K  and other matrices given in (12), (13), (14), and 

(15) reduce to : 
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Such output feedback controllers of FIR type are known 

to be more robust against temporary parameter changes 

than those of IIR type, as mentioned earlier. The design 

method of FIR type controllers through the state 

augmentation approach was discussed in [6]. While the 

proposed method extracts all controller gain matrices 

separately into a single matrix K  as shown above, the 

method of [6] does not. As a result, the proposed method 

leads to a simpler condition for the solution. This, in turn, 

leads to better results than [6], which will be illustrated 

in the second numerical example of Section 4. 

 

Remark 2: The controller (2) can be exactly repre-

sented as a structured state space model (4). However, 

such a model with structured matrices Ac, Bc, Cc, and Dc, 

makes numerical computation intractable. The control-

lers of the form (2) with general Ny and Nu cannot be 

obtained though the conventional methods for Ac, Bc, Cc, 

and Dc with all independent elements. Only for special 

cases, Ny = Nu, we can employ the existing different 

methods of obtaining reduced or full dynamic output 

feedback controls corresponding to Ny = Nu = 1, Ny = Nu 

= 2,� . However, output feedback controls of the form 

(2) for Ny ≠ Nu cannot be obtained from existing 

approaches due to structured matrices. 

 

3. APPLICATION OF EIOC TO H
∞
 CRITERION 

 

In this section, we consider the H
∞
 performance 

criterion in the design of the EIOC. In order to apply the 

H
∞
 criterion to the controller design, we consider the 

transfer function of the closed-loop system, which is 
1( ) ( ) .

cl cl cl cl cl
T z C zI A B D

−

= − +  From the well-known 

bounded real lemma for linear discrete-time systems [1], 

it is deduced that given 0,γ >  the closed-loop system 

controlled by the EIOC satisfies ,
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T γ
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<  and Acl is 
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satisfying the following matrix inequality: 
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where ( ),
u y

PΞ = +A BK C ( ),
w u yw

PΨ = +B BKD I  

is an identity matrix of appropriate dimension, and the 

symbol �  denotes a transposed block induced by 

symmetry. The matrix inequality (16) can be rewritten as 

0
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where G, U, and V are defined by 
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0 0 , 0 0 .
T T
u zu y ywU P V⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦� �B D C D  (19) 

We can eliminate the dependence on K  of the in-

equality (35) using the following projection lemma [1]: 

Lemma 1: Consider a symmetric matrix m m

G
×

∈R  

and two matrices U and V with the column dimension m. 

Then there exists a matrix K  of compatible dimen-

sions such that 0
T T T

G U V V U+ + <K K  if and only 

if 0
T

U U
W GW <  and 0,

T

V V
W GW <  where WU and WV 

denote any bases of the null space of U and V, 

respectively.              � 
 

Finally, the EIOC for the H
∞
 criterion can be obtained 

as in the following theorem: 
 

Theorem 1: Given the discrete-time system (1), there 

exists an EIOC that satisfies the H
∞
 criterion with 0γ >  

if and only if there exist symmetric matrices 0P >  and 

0Q >  that satisfy the following conditions: 
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where Σ  and Θ  are given by 

0
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P
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and NQ and NP denote the bases of the null spaces of 

[ ]
T T

u zu
B D  and [ ],

y yw
C D  respectively. 

Proof: First, in order to eliminate ,K  we apply the 

projection lemma [1]. With U and V defined in (19), WU 

and WV can be represented as: 

1
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If Q is set to 1
,P

−

0
T

U U
W GW <  and 0

T

V V
W GW <  

reduce to (43) and (46), respectively. This completes the 

proof.                � 

The EIOC is formulated as a static output feedback 

control problem and it also has a nonlinear coupling 

constraint, P = Q-1, which is hard to satisfy. However, we 

can find P and Q satisfying (20), (21), and (22) by 

utilizing the method presented in [2]. Accordingly, the 

coupling constraint, P = Q-1, is replaced by 

0.
P I

I Q

⎡ ⎤
≥⎢ ⎥

⎣ ⎦
 (24) 

We then equate P to Q-1 as closely as possible by solving 

the cone complementary problem, which is represented as: 

min tr( ) subject to (20) (21) and (24)PQ , , .  (25) 

The problem in (25) can be solved iteratively using the 

cone complementary algorithm. For iterative computa-

tion, we can construct an algorithm and then obtain a 

suboptimal performance bound, γ
so

, as follows: 
 

Algorithm for suboptimal H∞ bound with EIOC: 

Step 1: Choose a sufficiently large initial γ > 0 such 

that there exists a feasible solution to (20), (21) and (24). 

Set γ
so

 = γ. 

Step 2: Set i to zero. Find a feasible set (P0, Q0) 

satisfying (20), (21) and (24). 

Step 3: Solve the following linear matrix inequality 

(LMI) problem for the variables P and Q: 

Minimize tr( )

subject to (20) (21) and (24)

i i
Q P PQ+

, , .
 (26) 

Set 
1i

P P
+

=  and 
1

.

i
Q Q

+
=  

Step 4: If the stopping criterion is satisfied, then set γ
so

 

= γ and return to Step 2 after decreasing γ. If the stopping 

criterion is not satisfied within a specified number of 

iterations, say imax, then exit. Otherwise, set i = i + 1 and 

go to Step 3. 
 

The dimension of P is ( ) (
y y u u

n N n N n n+ × + × × +  

).
y y u u

N n N n× + ×  Therefore, according to [2], the stop-

ping criterion in Step 4 is to check whether the solution 

to the minimization problem given in (26) satisfies 

tr( ) .
y y u u

PQ n N n N n= + × + ×  However, satisfying this 

equality exactly is numerically too demanding. Instead, 

we check whether the matrix P, the solution to (26), 

satisfies the inequality 

1 1 1

1
0.

T T
z w

T T

z z zw

P P P

I P

I

γ

γ

− −

−

−

⎡ ⎤−
⎢ ⎥
⎢ ⎥Θ − + Θ <
⎢ ⎥
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C C D�

� �

 

 (27) 

If P satisfies the above inequality, then we set Q = P-1. 

The original three conditions (20), (21), and (22) are then 

all satisfied. After P is obtained, the inequality (16) 

reduces to an LMI with respect to K, and the remaining 

variables can be found by solving the LMI. 

 

4. NUMERICAL EXAMPLES 

 

Two numerical examples are presented in this section 

to illustrate the effectiveness of the proposed design 

methods. Especially, the features (b) and (c) in Section 2 

are highlighted through the examples. 
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Table 1. Suboptimal performance bounds γ
so

 for differ-

ent horizon lengths (Example 1). 

 Proposed method Method of [6] 

0, 0
y u

N N= =  11.39 11.40 

1, 0y uN N= =  11.22 11.22 

2, 0
y u

N N= =  11.06 11.06 

3, 0
y u

N N= =  10.91 10.91 

4, 0
y u

N N= =  10.78 10.79 

1, 1
y u

N N= =  9.95 × 

2, 1
y u

N N= =  9.90 × 

3, 1y uN N= =  9.88 × 

1, 2
y u

N N= =  9.90 × 

1, 3y uN N= =  9.88 × 

2, 2
y u

N N= =  9.87 × 

3, 3
y u

N N= =  9.87 × 

 

Example 1: Consider the following system: 

1

1 1 0.2 0.1

0.1 1.1 0 0

0 0.2 0.5 0.1

0

0.1 ,

0

k k k k

k

k

x x w

u

δ

δ

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥+ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (28) 

0 1 0 0

0 0 1 0 ,

0 0 0 1

k k k
z x u

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

[0 1 0] 2 ,k k ky x w= +  

where δk is an uncertain parameter that is employed to 

evaluate robustness of the controller. Initially, we 

assumed δk = 0. 

The optimal performance bound, i.e., γ*, for this 

system when controlled by a full order dynamic 

controller was computed to be 9.87 using the results of 

[1,12], whose algorithm is provided through a Matlab 

command “dhinflmi”. We applied the proposed 

algorithm to find the EIOC for different horizon lengths. 

The corresponding suboptimal performance bounds, γso, 

are shown in Table 1. imax is set to be 2000. When the 

proposed algorithm did not yield a feasible solution even 

after imax iterations, we assumed that the problem was 

infeasible for the given γso. When the EIOC is dependent 

only on the measured outputs and not on the past control 

inputs, its performance improved as the output horizon 

length, Ny, increased. In this case, the resultant 

controllers were of the FIR type. When Ny = 4, the 

performance bound improved up to γ =10.78, which was 

still far from the optimal value γ* = 9.87. Since the 

increase in the horizon length implies computational 

burden during execution, a large Ny should be avoided. 

We also obtained the suboptimal performance bounds 

using the method presented in [6]. Those values are 

listed in Table 1. It is noted that the method of [6] can 

only be applied to the design of controllers of the FIR 

type. As such, it cannot be applied to the design of 

controllers of the IIR type. For SISO systems, the 

proposed method seemed to be comparable to [6]. 

However, as will be shown in the next example, the 

proposed method outperformed the method of [6] for 

MIMO systems. It was also observed from Table 1 that 

the performance improved significantly when we used a 

single past control input uk-1 even though the output 

horizon length was set to be as short as 1. This was 

because the controller switched from the FIR type to the 

IIR type when we used the past control uk-1. For Ny = Nu 

= 2, the resultant EIOC achieved the optimal value, γ* = 

9.87. As a compromise between controller complexity 

and controller performance, it was reasonable to choose 

Ny = 2 and Nu = 1, which yielded γso = 9.90. Note that Nu 

= Ny = 1 gave an EIOC corresponding to a first order 

state space controller with three parameters (Nu + Ny + 1 

= 2Nc + 1 = 3), while Nu = Ny = 2 corresponded to a 

second order state space controller with five parameters 

(Nu + Ny + 1 = 2Nc + 1 = 5). Output feedback controls for 

Nu = Ny = 1 and Nu = Ny = 2 can also be obtained from 

existing reduced order output feedback controls. Note 

that the EIOC for Ny = 2 and Nu = 1 was a controller with 

a good compromise between complexity and perform-

ance which is not available by any state space controller. 

The EIOC for Ny = 2 and Nu = 1 is: 

1 2

1

3.8879 3.9566 0.0582

0.9760 .

k k k k

k

u y y y

u

− −

−

= − + +

+

 (29) 

At the sacrifice of optimality, we can achieve robust-

ness. When Ny = 4 and Nu = 0, we obtained the EIOC of 

FIR type as follows: 

1 2

3 4

4.1152 0.0514 0.0872

0.0392 0.1675 .

k k k k

k k

u y y y

y y

− −

− −

= − + +

+ +

 (30) 

The performance bound for this case was γso = 10.78, 

which was worse than any IIR type EIOC. However, as 

already mentioned, the FIR structure is known to be 

more robust than the IIR structure against transient 

uncertainties. To illustrate the robustness of the EIOC, 

we assumed the following transient uncertainty in (28). 

0.4, 100 150,

0, otherwise.
k

k
δ

≤ ≤⎧
= ⎨
⎩

 

The initial state of the system is given by 
0

[0 1 0] .
T

x =  

We assumed that 2(0,0.01 )
k

w ∈N  and performed 

simulations for 300 steps using the EIOC of the IIR type 

in (29) and the EIOC of the FIR type in (30). Fig. 1 

compares the trajectories of the second state, where the 

solid line presents for the EIOC of the FIR type (29) and 

the dotted one presents the EIOC of the IIR type (30). 

Both trajectories deviate from steady state values when 

uncertainties are applied. However, it is clearly observed 

that the trajectory of the EIOC of the FIR type converges 

to zero faster with much less deviation than that of the 

EIOC of the IIR type. 
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Fig. 1. Trajectory comparison of the second state (solid: 

EIOC of the FIR type, dotted: EIOC of the IIR 

type). 

 

Table 2. Suboptimal performance bounds γso for different 

horizon lengths (Example 2). 

 Proposed method Method in [6] 

0, 0
y u

N N= =  7.20 7.21 

1, 0
y u

N N= =  5.34 5.34 

2, 0
y u

N N= =  4.90 4.99 

3, 0
y u

N N= =  4.79 4.94 

4, 0
y u

N N= =  4.75 4.93 

1, 1
y u

N N= =  4.67 × 

 

Example 2: Consider the following multi-input un-

stable system 

1

2.9 0.3 2 0 0 1 0

1 0 1 1 0 0 1 ,

0.3 0.6 0.6 0 0 1 0

k k k k
x x w u

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

, 1 1 0 .

k

k k k

k

x
z y x

u

⎡ ⎤
⎡ ⎤= =⎢ ⎥ ⎣ ⎦

⎣ ⎦
 

Table 2 shows the suboptimal performance bounds for 

different horizon lengths. The optimal performance 

bound γ* for this system was computed to be 4.67. As in 

the previous example, the performances of the EIOC 

with Nu = 0 improved as the output horizon length, Ny, 

increased. For MIMO systems, the proposed method 

outperforms the method of [6] especially when the 

horizon length increases. It is notable that the 

performance bound of the EIOC with Ny = Nu = 1 is 

equal to that of the optimal dynamic output feedback 

control, which is of second order. It turns out that a 

further increase in the horizon lengths does not result in 

the performance improvement. The EIOC for Nu = 1 and 

Ny = 1 is given by 

1 1

1.2331 0.4362 0.4999 0.5065
.

0.5017 0.4156 0.4739 0.6506
k k k k
u y y u

− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (31) 

5. CONCLUSION 

 

A new controller structure for discrete-time systems, 

referred to as explicit input and output feedback 

controller (EIOC), was proposed in this paper. This 

structure has some features not present in the standard 

state space controllers, including transparency, ease of 

implementation, ability to represent both FIR and IIR 

type controllers, and flexible trade off between 

complexity and performance by specification of the 

number of independent controller parameters without 

any constraints.  

The EIOC was shown to be equivalent to a static 

output feedback control for an augmented system. This 

result allowed the use of available design techniques 

based on static output feedback controls to the EIOC. In 

an example of application, the H∞ criterion was 

employed to design an EIOC, and the simulation results 

were presented. The results of this paper can also be used 

to design an EIOC that can meet other types of 

performance criteria.  

It is not the intention of this paper to claim that the 

EIOC can entirely replace the standard state space type 

controllers, as there are many situations where the latter 

would be more useful than the former. Instead, we are 

suggesting that the EIOC has features that are not 

available in state space type controllers, and that these 

features may be useful in certain applications. 
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