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Abstract

In this paper, a simple receding horizon (or model predictive) control for state delayed systems is presented and its solution is
given in a closed form by a reduction method. While the control for a time-delay system is usually complex, the proposed controller
is simple to construct and therefore can be simply implemented in real applications. To check the closed-loop stability of the pro-

posed controller, a sufficient condition is provided by linear matrix inequalities. In addition, a numerical algorithm is presented for
computing the eigenvalues of systems with distributed time delays, which can be used as a necessary and sufficient condition to
check closed-loop stability. It is shown by simulation that this simple control can be a stabilizing control for time-delay systems.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is generally recognized that delays are natural
components of many dynamic processes. Therefore,
over many decades, there has been considerable
research to produce stabilizing controls for time-delay
systems.
First, infinite-time (steady state) optimal controls

minimizing quadratic performance criteria can be used
for stabilizing control designs [1]. The optimal control
produced for state delayed systems consists of feedback
of the current states, and the integral of past states.
However, the feedback gain matrices are very difficult to
compute because they are associated with several cou-
pled partial differential equations with two-point
boundary value conditions [1–3]. Only approximate
solutions have been produced using numerical tech-
niques [3,4].
Secondly, there have been other attempts to obtain

stabilizing controls by using only sufficient conditions,
such as Lyapunov methods [5–12]. The conditions often
give only memoryless controls, and general feedback
controls with distributed delays are difficult to derive.
Meanwhile, it is well known that in ordinary systems,

receding horizon (or model predictive) controls provide
stabilizing controls [13–20]. In particular, there is an
extremely simple way to stabilize linear systems [13].
For time-delay systems, general stabilizing receding
horizon controls are currently unknown. However, in
this paper, a simple but reasonably general receding
horizon control, similar to that for ordinary systems,
will be suggested for time-delay systems. We introduce a
reduction technique so that the optimal problem for
state-delay systems can be transformed to an optimal
problem for delay-free ordinary systems. Unlike the
corresponding ordinary systems, the stability of this
simple control is yet to be proved, although it is con-
jectured that this control can stabilize a broad class of
time-delay systems.
In order to check stability of the proposed control, we

provide two different schemes. First, we present a suffi-
cient stability condition in terms of linear matrix
inequalities (LMIs), which can be easily checked using
convex optimization algorithms [21]. It is believed that
the closed-loop stability can be checked only by this suf-
ficient condition in most cases. However, the generated
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control may still be stable even if the stability condition
is not met. We provide a numerical algorithm to com-
pute the eigenvalues of time-delay systems, which can be
used as a necessary and sufficient condition to check the
closed-loop stability of the proposed controller. In [22],
a numerical algorithm was proposed to compute the
eigenvalues of time-delay systems, which was not
extended to the case of more general time-delay systems
with distributed delay terms. The algorithm proposed in
this paper is applied to general time-delay systems with
distributed delays. It will be shown through simulations
that state-delay systems can be stabilized by the sug-
gested method.
The organization of the paper is as follows. In Section

2, a simple receding horizon control for state delayed
systems is derived. In Section 3, a sufficient condition in
terms of LMIs for the closed-loop stability is given. In
Section 4, a numerical algorithm is presented for com-
puting eigenvalues of general distributed delay systems
and applied to check the stability of the proposed con-
troller. Numerical examples are given in Section 5, and
finally, Section 6 presents the conclusions.
2. A simple receding horizon control for state delayed

systems

Let us consider a linear system with a delayed state

x
:
tð Þ ¼ A0x tð Þ þ A1x t� hð Þ þ B0u tð Þ ð1Þ

with the initial condition

x tð Þ ¼ � tð Þ; t 2 t0 � h; t0½ �

where x(t)2Rn, u(t) 2Rm, A0, A1 2R
n	n, B0 2R

n	m, h>0
is the delay, and �(t) is a continuous function. First, we
find the optimal control which minimizes a cost func-
tion defined by

J ¼

ðt1
t0

uT tð ÞRu tð Þdtþ xT t1ð Þ�x t1ð Þ; ð2Þ

where R2Rm	m and �2Rn	n are positive definite matri-
ces. This problem can be considered to be a minimum
control energy problem with a terminal state penalty.
In [1–3], an optimal control problem with respect to

the quadratic cost function, including both the control
and state weighting, has been considered. In this case,
the resulting optimal control law requires that partial
differential equations be solved, which is very difficult. It
will be shown that considering the cost function (2)
eliminates the need for solving partial differential equa-
tions while conserving some optimality of the resulting
control law.
The solution of (1) is given by [23]

x tð Þ ¼ � t� t0ð Þx t0ð Þ þ

ðt0
t0�h

� t� s� hð ÞA1x sð Þds

þ

ðt
t0

� t� sð ÞB0u sð Þds

ð3Þ

where the state transition matrix �(t) is the solution of
the matrix differential-difference equation

d

dt
� tð Þ ¼ A0� tð Þ þ A1� t� hð Þ ð4Þ

with the boundary conditions

� 0ð Þ ¼ I and � tð Þ ¼ 0; t < 0:

According to (3), the cost function (2) can be rewritten
by

J ¼

ðt1
t0

uT tð ÞRu tð Þ þ x̂T t1ð Þ�x̂ t1ð Þ; ð5Þ

where

x̂ tð Þ ¼

ðt
t0

� t1 � sð ÞB0u sð Þdsþ� t1 � t0ð Þx t0ð Þ

þ

ðt0
t0�h

� t1 � s� hð ÞA1x sð Þds; t 2 t0; t1½ �:
ð6Þ

It is noted that, by taking t=t0 in (6), x̂ tð Þ can be
represented in a closed form

x̂ tð Þ ¼ � t1 � tð Þx tð Þ þ

ðt
t�h

� t1 � s� hð ÞA1x sð Þds: ð7Þ

Note that x̂ tð Þ satisfies

x̂
:
tð Þ ¼ � t1 � tð ÞB0u tð Þ; ð8Þ

which is a differential equation without delay. It is
remarkable that an optimization problem for a time-
delay system (1) and (2) can be transformed to an opti-
mization problem for a delay-free ordinary system (5)–
(8). It is noted that by a reduction transformation
method, control-delay systems can be transformed to a
delay-free ordinary system [24], which can be used for
stabilization. In this sense, the transformation (6) is a
reduction transformation method for state-delay systems.
From LQ control theory, the closed-loop optimal

control is given by

u
 tð Þ ¼ �R�1BT0 �
T t1 � tð ÞP tð Þ

	 � t1 � tð Þx tð Þ þ

ðt
t�h

� t1 � s� hð ÞA1x sð Þds

� �
; ð9Þ
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where P(t) is the solution to the following Ricatti dif-
ferential equation:

P
:
tð Þ ¼ P tð Þ� t1 � tð ÞB0R

�1B0�
T t1 � tð ÞP tð Þ ð10Þ

with boundary condition P(t1)=�. It can be shown that
P(t) is given by

P tð Þ ¼ � IþW t1 � tð Þ�½ �
�1; ð11Þ

where

W t1 � tð Þ ¼

ðt1
t

� t1 � sð ÞB0R
�1B0�

T t1 � sð Þds: ð12Þ

We apply the receding horizon concept [25,26]. Con-
sider an optimal control of the system (1) which mini-
mizes a moving cost

J ¼

ðtþT
t

uT �ð ÞRu �ð Þd� þ xT tþ Tð Þ�x tþ Tð Þ;

where T is the horizon length. The receding horizon
control can be obtained by replacing t1 in (9) with t+T:

û tð Þ ¼ �R�1BT0 �
T Tð Þ� IþW Tð Þ�½ �

�1

	 � Tð Þx tð Þ þ

ðt
t�h

� tþ T� s� hð ÞA1x sð Þds

� �
:

ð13Þ

This suggested control law may be the simplest receding
horizon control. However, its stability is currently
unknown. It is believed the control (13) can stabilize a
broad class of time-delay systems because the corre-
sponding control of ordinary systems stabilizes the sys-
tems for some large �. It is noted that, unlike for
ordinary systems, general stabilizing receding horizon
controls for time-delayed system are, as yet, unknown.

Remark 2.1. The receding horizon control (13) is always
defined. Nonsingularity of [I+W(T)C] can be shown as
follows:

IþW Tð Þ ¼ C�1 þW Tð Þ
� �

C:

Since C>0 and C�1+W(T)>0, it follows that
[C�1+W(T)]C is nonsingular.

Remark 2.2. The optimal control that minimizes a cost
function

J ¼

ðt1
t0

uT tð ÞRu tð Þdt ð14Þ

subject to a fixed terminal state constraint

x t1ð Þ ¼ 0 ð15Þ
can be obtained by requiring C ¼ 1I in (2). In this case,
the receding horizon control is given by

û tð Þ ¼ �R�1BT0 F
T Tð ÞW�1 Tð Þ

	 F Tð Þx tð Þ þ

ðt
t�h

F tþ T� s� hð ÞA1x sð Þds

� �
:

ð16Þ

The control (16) is simpler than (13). Note that the
receding horizon control is defined only when the con-
trollability matrix (12) is nonsingular, which is equiva-
lent to the condition of pointwise controllability of the
time-delay system (1). In general, for time-delay sys-
tems, the functionwise controllability is considered as a
natural counterpart to the usual controllability of delay-
free systems. The receding horizon controller (16)
requires only pointwise controllability, which is less
restrictive than functionwise controllability.

Remark 2.3. In the case where the system is not pointwise
controllable, we can still apply the proposed control (16)
by applying the generalized inverse of the controllability
matrix instead of the inverse, W�1(T ).

Remark 2.4. The values of the state transition matrix
F(T) can be obtained by solving (4) numerically [27].
However, in the proposed receding horizon control, we
can set T4 h so that we obtain F(T)=eA0T, which is
simple to compute. The horizon length T is a design
parameter in the RHC. It is noted that the state over the
horizon is not weighted. Instead the terminal state is
weighted. Therefore the shorter horizon length is expected
to yield the faster convergence. For the purpose of fast
stabilization, taking T4 h is preferred.

Remark 2.5. The integral term
Ð t
t�hF tþ T� s� hð Þ

A1x sð Þds in the controller (13) can be realized by a tra-
pezoidal integration method with the step size D. It is
natural that the smaller D we use, the more exact result we
get. The selection of D depends on the time constant of the
system. In general, D=0.01 gives satisfactory result and
smaller step size than that yields little difference.
3. Stability condition for the receding horizon control

It is believed that the suggested control can stabilize
many time-delay systems. This will be illustrated by
simulations in the next section. However, for rigorous
proof of stability, we provide a sufficient LMI condition
to check whether the closed-loop system controlled by
the receding horizon control (13) or (16) is asymptoti-
cally stable or not. The following inequality is intro-
duced [12], which is essential in deriving the sufficient
condition provided in this section.
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2

ð
�

aT �ð ÞN b �ð Þd�<

ð
�

a �ð Þ

b �ð Þ

24 35T X YþN

YTþN
T

Z

24 35 a �ð Þ

b �ð Þ

24 35d�
ð17Þwhere� �
V

V

V

V

V

X Y
YT Z

5 0: ð18Þ

a ð Þ 2 Rna and b ð Þ 2 Rnb are defined on the inter-
val � and N 2 Rna	nb , X 2 Rna	na ; Y 2 Rna	nb

and Z 2 Rnb	nb .
The following theorem gives a sufficient condition for

the stability of the proposed receding horizon control.

Theorem 3.1. If there exist P,M, S,Q1,Q2,X1,Y1,Z1,X2,
Y2, Z2, X3, Y3, Z3, X4, Y4, Z4, X5, Y5, Z5 and l such that

P11 P12 P13 P14

PT12 P22 P23 P24

PT13 PT23 P33 P34

PT14 PT24 PT34 P44

26664
37775 < 0; ð19Þ

P M

MT S

� �
> 0;

X1 Y1

YT
1 Z1

� �
5 0;

X2 Y2

YT
2 Z2

� �
5 0;

ð20Þ

X3 Y3

YT
3 Z3

� �
5 0;

X4 Y4

YT
4 Z4

� �
5 0;

X5 Y5

YT
5 Z5

� �
5 0;

ð21Þ

Z1 þ Z2 þ Z3 � lI ð22Þ

where
V

V

V

P11
4
¼ATPþ PAþQ1 þQ2 þ A

T h�Tð ÞZ4 þ hZ5½ �A

þ TX1 þ ðh�TÞX4 þ hX5 þ Y4 þ Y
T
4 þ Y5 þ Y

T
5

P12
4
¼MA1 � Y4

P13
4
¼PA1 �MF Tð ÞA1 � Y5 þ A

T h� Tð ÞZ4 þ hZ5½ �A1

P14
4
¼PBþ ATMþMA0 þ Y1 þ A

T h� Tð ÞZ4 þ hZ5½ �B

P22
4
¼ �Q1 þ TX2 þ lAT

1 CA1

P23
4
¼0

P24
4
¼AT

1 Sþ Y2

P33
4
¼ �Q2 þ TX3 þ h� Tð ÞAT

1 Z4A1 þ hA
T
1 Z5A1

P34
4
¼AT

1M� AT
1 F

T Tð ÞSþ Y3 þ A
T
1 h� Tð ÞZ4 þ hZ5½ �B

P44
4
¼AT

0 SþSA0þB
TMþMTBþBT h�Tð ÞZ4 þ hZ5½ �B

A
4
¼A0�B0R

�1BT0 F
T Tð ÞC IþW Tð ÞC½ �

�1F Tð Þ; ð23Þ
B
4
¼ � B0R

�1BT0 F
T Tð ÞC IþW Tð ÞC½ �

�1; ð24Þ

C
4
¼

ðT
0

FT �ð ÞF �ð Þd�; ð25Þ

then the system (1) with the control (13) for T4h is
asymptotically stable.

Proof 1. Choose a Lyapunov functional as

V x t� �ð Þ; x
:
t� �ð Þ; � 2 0; h½ �ð Þ

¼ V1 þ V2 þ V3 þ V4 þ V5 þ V6 þ V7 þ V8

where

1
4
¼

x tð ÞÐ tþT�h
t�h � tþ T� s� hð ÞA1x sð Þds

" #T
P M

MT S

" #

	
x tð ÞÐ tþT�h

t�h � tþ T� s� hð ÞA1x sð Þds

" #
;

2
4
¼

ðT
0

ðtþT�h
t��þT�h

xT �ð ÞAT1�
T �ð Þ Z1þZ2þZ3ð Þ� �ð ÞA1x �ð Þd�d�;

3
4
¼

ðt
0

ð�
�� h�Tð Þ

x �ð Þ

x
:
�ð Þ

� �T X4 Y4

YT
4 Z4

� �
x �ð Þ

x
:
�ð Þ

� �
d�d�;

4
4
¼

ðt
0

ð�
��h

x �ð Þ

x
:
�ð Þ

� �T X5 Y5

YT
5 Z5

� �
x �ð Þ

x
:
�ð Þ

� �
d�d�;

5
4
¼

ð0
� h�Tð Þ

ðt
tþ�

x
:T �ð ÞZ4x

:
�ð Þd�d�;

6
4
¼

ð0
�h

ðt
tþ�

x
:T �ð ÞZ5x

:
�ð Þd�d�;

7
4
¼

ðt
tþT�h

xT �ð ÞQ1x �ð Þd�;

8
4
¼

ðt
t�h

xT �ð ÞQ2x �ð Þd�;

for
P M

MT S

� �
> 0; Z1 þ Z2 þ Z35 0;

X4 Y4

YT
4 Z4

� �
5 0;

X5 Y5

YT
5 Z5

� �
5 0; Q1 > 0; Q2 > 0:
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Since the closed-loop system (1) with the control (13)
for T4h is

x
:
tð Þ ¼ A0 � B0R

�1BT0 �
T Tð Þ� IþW Tð ÞCð Þ

�1� Tð Þ
� �

x tð Þ

þ A1x t� hð Þ � B0R
�1BT0 �

T Tð Þ� IþW Tð Þ�ð Þ
�1ðtþT�h

t�h

� tþ T� s� hð ÞA1x sð Þds ¼ Ax tð Þ þ A1x t� hð Þ

þ B

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds;

ð26Þ

From the fact

d

dt

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

¼ A1x tþ T� hð Þ �� Tð ÞA1x t� hð Þ

þ A0

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds;

the derivative of V1 is written as

V
:
1 ¼ xT tð Þ ATPþ PA

� �
x tð Þ

þ

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �T
	 AT

0 Sþ SA0 þ B
TMþMTB

� �
	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �

þ 2xT tð Þ PA1 �M� Tð ÞA1ð Þx t� hð Þ

þ 2xT tð Þ MA1ð Þx tþ T� hð Þ þ 2xT tð Þ

	 PBþ ATMþMA0
� �

	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �

þ 2xT tþ T� hð Þ AT
1 S

� �
	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �

þ 2xT t� hð Þ AT
1M� AT

1 �
T Tð ÞS

� �
	

ðtþT�h
t�h

F tþ T� s� hð ÞA1x sð Þds

� �
where A and B are as defined in (23) and (24)
Defining a ð Þ; b ð Þ, and N in (17) as a �ð Þ

4
¼x tð Þ;

b �ð Þ
4
¼� tþ T� �� hð ÞA1x �ð Þ, and N

4
¼PBþ ATMþ

MA0 for all � 2 t� h; t½ � and applying the inequality (17),
we have

2xT tð Þ PBþATMþMA0
� � ðtþT�h

t�h

� tþT�s�hð ÞA1x sð Þds

� �
4TxT tð Þ þ 2xT tð Þ PBþ ATMþMA0 þ Y1

� �
	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �

þ

ðtþT�h
t�h

xT sð ÞAT
1 �

T tþ T� s� hð Þ

	 Z1� tþ T� s� hð ÞA1x sð Þds

with the LMI condition

X1 Y1
YT
1 Z1

� �
5 0:

Similarly we have

2xT tþ T� hð Þ AT
1 S

� � ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �
4TxT tþ T� hð ÞX2x tþ T� hð Þ

þ 2xT AT
1 Sþ Y2

� � ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �

þ

ðtþT�h
t�h

xT sð ÞAT
1 �

T tþ T� s� hð Þ

	 Z2� tþ T� s� hð ÞA1x sð Þds

and

2xT t�hð Þ AT
1M�AT

1�
T Tð ÞS

� � ðtþT�h
t�h

� tþT�s�hð ÞA1x sð Þds

� �
4TxT t� hð ÞX3x t� hð Þ

þ 2xT t� hð Þ AT
1M� AT

1 �
T Tð ÞSþ Y3

� �
	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �

þ

ðtþT�h
t�h

xT sð ÞAT
1 �

T tþ T� s� hð Þ

	 Z3� tþ T� s� hð ÞA1x sð Þds
W.H. Kwon et al. / Journal of Process Control 13 (2003) 539–551 543



with LMI conditions

X2 Y2
YT
2 Z2

� �
5 0;

X3 Y3
YT
3 Z3

� �
5 0:

Hence, V
:
1 satisfies

V
:
14 xT tð Þ ATPþ PAþ TX1

� �
x tð Þ

þ TxT tþ T� hð ÞX2x tþ T� hð Þ

þ TxT t� hð ÞX3x t� hð Þ

þ

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �T
	 AT

0 Sþ SA0 þ B
TMþMTB

� �
	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �
þ 2xT tð Þ PA1 �M� Tð ÞA1ð Þx t� hð Þ

þ 2xT tð Þ MA1ð Þx tþ T� hð Þ

þ 2xT tð Þ PBþ ATMþMA0 þ Y1
� �

	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �
þ 2xT tþ T� hð Þ AT

1 Sþ Y2
� �

	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �
þ 2xT t� hð Þ AT

1M� AT
1 �

T Tð ÞSþ Y3
� �

	

ðtþT�h
t�h

� tþ T� s� hð ÞA1x sð Þds

� �
þ

ðtþT�h
t�h

xT sð ÞAT
1 �

T tþ T� s� hð Þ

	 Z1 þ Z2 þ Z3ð Þ� tþ T� s� hð ÞA1x sð Þds:

The derivative of V2 is written as

V
:
2 ¼ xT tþ T� hð ÞAT

1

ðT
0

�T �ð Þ Z1 þ Z2 þ Z3ð Þ� �ð Þd�

� �

	 A1x tþ T� hð Þ �

ðtþT�h
t�h

xT sð ÞAT
1 �

T tþ T� s� hð Þ

	 Z1 þ Z2 þ Z3ð Þ� tþ T� s� hð ÞA1x sð Þds
With the condition (22), V
:
2 satisfies

V
:
24lxT tþ T� hð ÞAT

1 CA1x tþ T� hð Þ

�

ðtþT�h
t�h

xT sð ÞAT
1 �

T tþ T� s� hð Þ Z1 þ Z2 þ Z3ð Þ

	� tþ T� s� hð ÞA1x sð Þds:

The derivatives of V3 to V8 are represented by

V
:
3 ¼ h� Tð ÞxT tð ÞX4x tð Þ þ 2xT tð ÞY4

ðt
t� h�Tð Þ

x
:
�ð Þd�

þ

ðt
t� h�Tð Þ

x
:T �ð ÞZ4x

:
�ð Þd�

V
:
4 ¼ hxT tð ÞX5x tð Þ þ 2xT tð ÞY5

ðt
t�h

x
:
�ð Þd�

þ

ðt
t�h

x
:T �ð ÞZ5x

:
�ð Þda

V
:
5 ¼ h� Tð Þx

:T tð ÞZ4x
:
tð Þ �

ðt
t� h�Tð Þ

x
:T �ð ÞZ4x

:
�ð Þd�

V
:
6 ¼ hx

:T tð ÞZ5x
:
tð Þ �

ðt
t�h

x
:T �ð ÞZ2x

:
�ð Þd�

V
:
7 ¼ xT tð ÞQ1x tð Þ � x

T tþ T� hð ÞQ1x tþ T� hð Þ

V
:
8 ¼ xT tð ÞQ2x tð Þ � x

T t� hð ÞQ2x t� hð Þ:

Using the fact

x
:
tð Þ ¼Ax tð ÞþA1x t�hð ÞþB

ðtþT�h
t�h

� tþT� s�hð ÞA1x sð Þdsðt
t� h�Tð Þ

x
:
�ð Þd� ¼ x tð Þ � x tþ T� hð Þ

ðt

t�h

x
:
�ð Þd� ¼ x tð Þ � x t� hð Þ

we finally obtain

V
:
4 x�T

P11 P12 P13 P14

PT12 P22 P23 P24

PT13 PT23 P33 P34

PT14 PT24 PT34 P44

266664
377775x� ð27Þ

where

x� ¼

x tð Þ

x tþ T� hð Þ

x t� hð ÞÐ tþT�h
t�h � tþ T� s� hð ÞA1x sð Þds

266664
377775
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Therefore, if LMIs (19) to (22) are satisfied, V
:
will be

negative and thus the closed-loop system (26) is asymp-
totically stable. This completes the proof. &
Since the condition of Theorem 3.1 is formulated in

terms of LMIs, it can be easily checked using convex
optimization algorithms [21]. It is noted that even if the
above sufficient condition is not met, the receding hor-
izon control (13) can still stabilize the systems. In the
next section, we will provide an algorithm, as a neces-
sary and sufficient condition, to check the closed-loop
stability by calculating the eigenvalues of time-delay
systems directly.

Remark 3.1. The stability of the system (1) with the
control (16) can also be checked by Theorem 3.1. In this
case, A and B are given differently from those in (23) and
(24) as follows:

A
4
¼A0 � B0R

�1BT0 F
T Tð ÞW�1 Tð ÞF Tð Þ;

B
4
¼ � B0R

�1BT0 F
T Tð ÞW�1 Tð Þ:
4. Eigenvalue searching algorithm for distributed delay

systems

The state delayed system (1) with the proposed RHC
(13) leads to the closed-loop system

x
:
tð Þ ¼ A0 � B0R

�1BT0 �
T Tð Þ� IþW Tð Þ�ð Þ

�1� Tð Þ
� �

x tð Þ

þ A1x t� hð Þ � B0R
�1BT0 �

T Tð Þ� IþW Tð Þ�ð Þ
�1

	

ðt
t�h

� tþ T� s� hð ÞA1x sð Þds:

ð28Þ

To check the necessary and sufficient condition for the
closed-loop stability, we have to find if there is any
eigenvalue of (28) whose real part is positive or equal to
zero. For this purpose, we will provide a numerical
algorithm to compute the eigenvalues of general dis-
tributed-delay systems.
Let us consider a system

x
:
tð Þ ¼ K0x tð Þ þ

XNx
l¼1

Klx t� hxl
� �

þ
XNd
l¼1

ð0
�hdl

Dl 	ð Þx tþ 	ð Þd	; t5 0

ð29Þ

where K0, Kl 2 Rn	n, hxl and hdl are positive delay
parameters, and elements of Dl(	) have bounded varia-
tions on �max hdl

� �
; 0

� �
. It can be seen that (28) is a

special case of (29). The characteristic function corre-
sponding to (29) is given by
� lð Þ ¼ det lI� K0 �
XNx
l¼1

e�hxllKl �
XNd
l¼1

ð0
�hdl

el	Dl 	ð Þd	

 !
:

ð30Þ

It is well known that the trivial solution x(t)=0 of the
time-delay system (29) is stable if and only if the
characteristic function (30) has no zeros such that Re
l50 and the kernel Dl(	) have bounded variation [28].
Consider the Taylor series for the exponential terms

of (30) around a certain point l0:

e�hxll ¼ e�hxll0
X1
k¼0

�hxl
� �k l� l0ð Þ

k

k!
; ð31Þ

el	 ¼ el0	
X1
k¼0

	k l� l0ð Þ
k

k!
: ð32Þ

Since it is impossible to calculate the summation up to
infinity, we truncate (31) and (32) at N terms, such that

e�hxll0
XN�1
k¼0

�hxl
� �k l� l0ð Þ

k

k!
; ð33Þ

el	 ’ el0	
XN�1
k¼0

	k l� l0ð Þ
k

k!
: ð34Þ

Then (30) reduces to an approximate characteristic
function

�̂ lð Þ ¼ det
XN�1
k¼0

l� l0ð Þ
kGk

 !
ð35Þ

where
G0 ¼ l0I� K0 �
XNx
l¼1

e�hxll0Kl �
XNd
l¼1

ð0
�hdl

el0	Dl 	ð Þd	; ð36Þ

G1 ¼ Iþ
XNx
l¼1

hxle
�hxll0Kl �

XNd
l¼1

ð0
�hdl

el0		K2 	ð Þd	; ð37Þ

Gk ¼ �
1

k!

XNx
l¼1

e�hxll0 �hxl
� �k

Kl

�
1

k!

XNd
l¼1

ð0
�hdl

el0		kDl 	ð Þd	; 24 k4N� 1:

ð38Þ

Now, we have the following theorem.

Theorem 4.1. Let bljlj be the jth zero of the approximate
characteristic function (35). Then bljlj is given bybljlj ¼ xj þ l0; j ¼ 1; 2; . . . ; n N� 1ð Þ ð39Þ
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where xj is the jth root of

Xn N�1ð Þ

m¼0

X
�

det

g� i11

g� i22
..
.

g� inn

266664
377775

0BBBB@
1CCCCAxm ¼ 0 ð40Þ

in which O is the set of all possible permutations of the
integers (i1, i2,. . .,in) satisfying

i1 þ i2 þ    þ in ¼ m; 04 i1; i2; . . . ; in4N� 1

and g�ikk is the k-th row of Gk defined by (36)–(38).

Proof. Consider

�̂0 xð Þ ¼ det
XN�1
k¼0

xkGk

 !
¼ 0 ð41Þ

where Gk is defined by (36)–(38). Next, we define aij(x)
as the (i, j) th element of

PN�1
k¼0 x

kGk such that

aij xð Þ ¼ gN�1ij xN�1 þ gN�2ij xN�2 þ    þ g1ijxþ g
0
ij ð42Þ

where gkij is the (i, j)th element of Gk. From the well
known property of determinants [29], it follows that

�̂0 xð Þ ¼ det aij xð Þ
� �� �

¼
X



�ð Þa1k1 xð Þa2k2 xð Þ    ankn xð Þ

ð43Þ

where 
 is the set of all possible permutations of the
integers from 1 to n, and the (�) sign appears if the

number of transpositions in the permutation is odd.
Now, from (42), it is seen that

a1k1 xð Þa2k2 xð Þ    ankn xð Þ

¼ gN�11k1
xN�1 þ gN�21k1

xN�2 þ    þ g11k1xþ g
0
1k1

� �
gN�12k2

xN�1 þ gN�22k2
xN�2 þ    þ g12k2xþ g

0
2k2

� �
   gN�1nkn

xN�1 þ gN�2nkn
xN�2 þ    þ g1nknxþ g

0
nkn

� �

¼
Xn N�1ð Þ

m¼0

X
�

gi11k1g
i2
2k2

   ginnkn

 !
xm

ð44Þ
where � is as defined in Theorem 4.1. Hence, it follows
from (43) and (44) that

�̂0 xð Þ ¼
X



�ð Þ
Xn N�1ð Þ

m¼0

X
�

gi11k1g
i2
2k2

   ginnkn

 !
xm

¼
Xn N�1ð Þ

m¼0

X
�

X



�ð Þgi11k1g
i2
2k2

   ginnkn

 !
xm

¼
Xn N�1ð Þ

m¼0

X
�

det

g�i11

g�i22

..

.

g�inn

2666664

3777775

0BBBBB@

1CCCCCAxm

where g�ikk is the k th row of Gik .
If xj is the jth root of (41), it is obvious from (35) and

(41) that lj=xj+l0 is the corresponding root of the
approximate characteristic equation, �� l ¼ 0ð Þ. This
completes the proof. &
Using Theorem 4.1, we can transform the approxi-

mate characteristic equation �� l ¼ 0ð Þ into a polynomial
equation which can be solved using well-established
numerical methods. However, it should be noted that
the roots obtained are only valid in a small region
around the center point of the Taylor expansion, l0. We
propose an eigenvalue searching algorithm using Theo-
rem 4.1. Some useful properties of time-delay systems
will be exploited here, such as

(1) An upper bound on the magnitude of Right Half

Plane (RHP) eigenvalues can be computed [22].

(2) The number of eigenvalues inside a given disk

centered at the origin can be computed [30].

(3) Eigenvalues are asymptotically distributed on a

finite number of chains [28].

First, we note that it is impossible to find all eigen-
values of time-delay systems since they have an infinite
number of eigenvalues. However, to check the stability
of a system, we do not need to compute all the eigen-
values on the whole complex plane. Instead, we only
need to check for the existence of eigenvalues on the
RHP. Fortunately, it is known that time-delay systems
have a finite number of eigenvalues on the RHP.
Moreover, an upper bound on the magnitude of RHP
eigenvalues can be computed as follows [22]:

lj j4 K0k k þ
XNx
l¼1

Klk k þ
XNd
l¼1

ð0
�hdl

Dl 	ð Þ
    d	 for Rel5 0:

ð45Þ

Therefore, setting the above upper bound as the radius,
we consider a disk centered at the origin. Since it is
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guaranteed that there exist no RHP eigenvalues outside
this disk, we search eigenvalues only inside this disk
region.
Next, we use the result of [3] which enables us to

know how many eigenvalues exist inside this disk in
advance. Using this pre-computed information, we can
see if we have found all existing eigenvalues to stop the
iterations.
Finally, we make use of the observation that the

eigenvalues of time-delay systems are asymptotically
distributed on a finite number of chains [28]. This means
that the eigenvalues of time-delay systems are not scat-
tered arbitrarily, but are located around one such chain.
Therefore, choosing the center point l0 in Theorem 4.1
as the eigenvalue found in the previous step, we can find
the eigenvalues very efficiently.
Combining these ideas, an eigenvalue searching algo-

rithm can be devised as follows.

4.1. Eigenvalue searching algorithm 4.1 (main algorithm)
(1) Compute the upper bound (45) on the magnitude

of RHP eigenvalues, which gives the radius of
the disk in which the search will be performed.

(2) Compute the total number of eigenvalues inside

the search disk using the method in [30].

(3) Set the initial l0 as the origin.

(4) Solve (40) to obtain n(N�1) approximate roots l̂
satisfying (39).
(5) Refine each root using the following procedure,
and select valid eigenvalues among them.
5.1 Among n(N�1) roots found in Step 4 of
Algorithm 4.1, select the refinement candi-
dates l� with the roots satisfying j�ðl̂Þj < "0,
and double the polynomial order N pre-
viously used.

5.2 For each candidate l�, set l0 ¼ l� and run the

following loops. a. Find n(N�1) approximate
roots (39) around l0 by solving (40). Among
the roots found, define l~ as the root that is
nearest to l0. b. If j�ðl~Þj < "f , accept l~ as a
valid eigenvalue, and select the next candidate
l�. Else if j�ðl~Þj > j�ðl0Þj, double the poly-
nomial order N and go to Step 2a. Else, sst
l0 ¼ l~ and go to Step 2a.

(6) If an eigenvalue outside the disk is found, go to

Step 7.
Else if no new eigenvalue is found, double the
polynomial order N and go to Step 4.
Else, set l0 as the newly found eigenvalue with
the largest magnitude and go to Step 8.

(7) If the total number of eigenvalues found is equal

to the number pre-computed in Step 2, then quit.
Else, choose a different l0 among the eigenvalues
found in the first loop (i.e., the eigenvalues found
when l0 was the origin) and go back to Step 4.

The refinement procedure in Step 5 is needed because
the approximations (33) and (34) are valid only in a
small neighborhood of l0. Through the procedure, more
accurate eigenvalues can be obtained than the values
found in the first step. In the algorithm, "0 and "f are
tolerance parameters to be set by the user.
We will give examples in the next section to verify that

the proposed algorithm is useful for checking the
closed-loop stability of the RHC suggested in this
paper.
5. Examples

In this section, two numerical examples are presented
to illustrate the proposed methods. The first example is
an open-loop stable time-delay system for a chemical
reactor. The second one is an open-loop unstable liquid
monopropellant rocket motor.

Example 5.1. Consider an example of a typical control
problem occurring in the chemical and petroleum
industries [4]. The block diagram in Fig. 1 shows a
refining plant.
Raw materials A and B enter the chemical reactor and

take part in three chemical reactions that produce a
product P along with some other byproducts. FA and FB
represent the feed rates (in pounds per hour) of raw
Fig. 1. Refining plant.
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;

materials A and B, respectively. The linearized (time-
scaled) equations for the chemical reactor are

da

dt
¼ �4:93a tð Þ þ 1:92a t� 1ð Þ � 1:01b tð Þ þ

�FA
6VR

db

dt
¼ �3:20a tð Þ�5:03b tð Þþ1:92b t�1ð Þ�12:8c tð Þ þ

�FB
6VR

dc

dt
¼ 6:40a tð Þþ0:347b tð Þ�32:5c tð Þþ1:87c t�1ð Þ�1:04p tð Þ

dp

dt
¼ 0:833b tð Þ þ 11:0c tð Þ � 3:96p tð Þ þ 0:724p t� 1ð Þ:

Here, one time unit is 10 min, �FA is the deviation from
the nominal value of the feed rate of material A in
pounds per hour, VR is the pound-volume of the chem-
ical reactor, �FB is the deviation of the feed rate of
material B, a(t) is the deviation in the weight composi-
tion of reactant A from its nominal value, b(t) is the
deviation in the weight composition of reactant B, c(t) is
the deviation in the weight composition of an inter-
mediate product C, and p(t) is the deviation in the
weight composition of the product P. Letting x1=a,
x2=b, x3=c, x4=p, u1 ¼

�FA
6 VR

, and u2 ¼
�FB
6 VR

, we can
write the system

x
:
¼ A0x tð Þ þ A1x t� 1ð Þ þ Bu tð Þ ð46Þ

where

A0 ¼

�4:93 �1:01 0 0

�3:20 �5:30 �12:8 0

6:40 0:347 �32:5 �1:04

0 0:833 11:0 �3:96

26664
37775;

A1 ¼

1:92 0 0 0

0 1:92 0 0

0 0 1:87 0

0 0 0 0:724

26664
37775

B ¼

1 0

0 1

0 0

0 0

26664
37775:

The weight matrix R and the terminal state weight
matrix � are chosen as follows:

R ¼
1 0
0 1

� �
; � ¼ 10 000	

1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 100

2664
3775
For T=0.2, 0.6, and 1, the closed-stability was checked
using LMI conditions in Theorem 3.1. It turned out that
LMIs are all feasible, which means that the closed-loop
system is asymptotically stable. In case of T=0.6, the
receding horizon control is given by

u tð Þ ¼
�0:6851 �0:1330 �0:2732 �0:8547

�0:1330 �0:2103 �0:1234 �0:5562

� �
x tð Þ

þ
�0:859 1:3995 14:7132 �10:8215

�0:6695 �0:4512 10:3984 �6:6652

� �
ðt�0:4
t�1

eA0 t�s�0:4ð ÞA1x sð Þds:

ð47Þ

The receding horizon controllers obtained for T=0.2,
0.6 and 1 have been applied to the system with initial
state �1(	)=0.1, �2(	)=�3(	)=�4(	)=0, �14	40.
Fig. 2 compares the state trajectories x1 resulting from
the proposed controller with the one resulting from the
method in [4]. It is seen that the uncontrolled system is
very sluggish. It is well illustrated in Fig. 2 that the
receding horizon controller with the shorter horizon
length yields the faster response. In case of T=0.2, the
proposed controller outperforms the one proposed in
[4].
To illustrate the sensitivity of the proposed RHC

against the variation in the delay size, we designed a
receding horizon controller assuming T=0.6 and h=1
and applied it to the system with different delay sizes.
Fig. 3 compares the state trajectories for x1, from which
we can say that the proposed RHC is robust against the
variation in the delay size.

Example 5.2. Consider a liquid monopropellant rocket
motor with a pressure feeding system in [31]. A linear-
ized version of the feeding system and combustion
chamber equations produces the state-space model (1)
with h=1 and

A0¼

0 0 0 0

0 0 0 � 1

�1 0 � 1 1

0 1 � 1 0

26664
37775; A1¼

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

26664
37775; B0¼

0

1

0

0

26664
37775

For this example, we designed a controller with a term-
inal state constraint, that is, x(t+T)=0. The weight
matrix R is chosen as R=1. Since this system is not
pointwise controllable, but pointwise stabilizable, we
could design a controller (16) using the generalized
inverse of the controllability matrix (12). The closed-
loop stability was tested using the LMI conditions of
Theorem 3.1 for T=0.6 and 1. It turned the out that the
LMI conditions are feasible, which means the closed-
loop system is asymptotically stable.
548 W.H. Kwon et al. / Journal of Process Control 13 (2003) 539–551



Fig. 4 compares the state trajectories x1 resulting from
the proposed controller with the one resulting from the
method in [31] in case that the initial condition is
�1 	ð Þ ¼ �2 	ð Þ ¼ �2 	ð Þ ¼ �4 	ð Þ ¼ 1; �14 	4 0. The
controller proposed in [31] is given by

u tð Þ ¼ �Kc x tð Þ þ

ðt
t�1

eAc t�h�sð ÞA1x sð Þds

� �
;

where

Kc ¼ �7:6801 3:8526 �2:8497 3:5650
� �

;

Ac ¼

�1:0193 0 1:0193 0

�0:4986 0 0:4986 �1

�2:8718 0 0:8718 1

�0:9215 1 �0:0785 0

26664
37775:
Fig. 2. State x1: chemical reactor model.
Fig. 3. State x1 for different delay sizes: chemical reactor model.
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Fig. 4 shows that the uncontrolled system is unstable.
The receding horizon controllers obtained for both
T=0.6 and T=1 stabilize the system faster than the the
controller of [31].
In order to clearly illustrate the stability, we applied

the proposed eigenvalue searching algorithm of Algo-
rithm 4.1 for T=1. The eigenvalues of the open-loop
systems are �0.1862�0.9179i, 0.1125�1.5201i, and
�1.9745. This shows that the open-loop system is
unstable. The eigenvalues of the closed-loop system are
�0.5076�0.9159i, �2.6094�3.0678i, �2.0555�7.4449i,
and �2.6542�13.8761i. We see that all unstable poles
have been moved to the stable region. Fig. 4 illustrates
the closed-loop state trajectories, which clearly show the
stabilizing effect.
6. Conclusions

This paper proposes a simple receding horizon control
for state delayed systems, while steady state stabilizing
LQ regulating controls for time-delay systems are
usually very complex. The proposed controller is very
simple to construct and thus easily implemented in real
applications. To check the closed-loop stability of the
proposed controller, a sufficient condition in terms of
linear matrix inequalities is proposed. Also, a numerical
algorithm is presented for computing the eigenvalues of
general distributed delay systems, which can be used for
the necessary and sufficient stability check of the pro-
posed controller. Although guaranteed stability of the
suggested control is not known, it is believed that this
control can stabilize time-delay systems that can be
stabilized by other control methods. Since the proposed
control is a simple and easy control, we suggest use of
this control as the first candidate for stabilizing control
for the delay systems. However, in this case, its stability
must be checked, possibly by the methods suggested in
this paper.
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