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A New Model of Magnetic Force in Magnetic Levitation Systems 
 
 

Y. S. Lee†, J. H. Yang* and S. Y. Shim* 
 
 

Abstract – In this paper, we propose a new model of the magnetic control force exerted on the 
levitation object in magnetic levitation systems. The model assumes that the magnetic force is a 
function of the voltage applied to an electromagnet and the position of a levitation object. The function 
is not explicitly expressed but represented through a 2D lookup table constructed from the 
experimentally measured data. Unlike the conventional model that reveals only local characteristics of 
the magnetic force, the proposed model shows global characteristics satisfactorily. Specially devised 
measurement equipment is utilized in order to gather the data required for model construction. An 
experimental procedure to construct the model is presented. We apply the proposed model to designing 
a sliding mode controller for a lab-built magnetic system. The validity of the proposed model is 
illustrated by comparing the performances of the controller adopting the conventional model with that 
of the controller adopting the proposed model. 
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1. Introduction 
 
Magnetic levitation systems have practical importance in 

many engineering systems such as high-speed maglev 
passenger trains, frictionless bearings, levitation of wind 
tunnel models, etc. [7-10]. They have been used for 
educational purposes in teaching students on the concept of 
feedback control. A lot of studies have been conducted for 
the control of magnetic levitation systems. In order to 
handle nonlinear characteristics of the systems, various 
nonlinear control techniques such as sliding mode control, 
feedback linearization, and backstepping have been 
applied [2, 6, 9]. When applying model-based control, 
accurate system modeling needs to precede designing of a 
controller. In particular, the magnetic force exerted on the 
levitation object should be carefully characterized for good 
control of magnetic levitation systems. 

Magnetic control force exerted on the levitation object is 
a function of the coil current and the displacement 
between the levitation object and the electromagnet. The 
effect of the coil current on the magnetic control force 
exerted on the levitation object at a certain position differs 
depending on the substance of the levitation object. If the 
levitation object is a ferromagnetic ball, the magnetic 
force is proportional to the square of the coil current [5, 6, 

11, 13, 15]. If the levitation object is a permanent magnet, 
the magnetic force is proportional to the coil current [3]. 
In [2], where the levitation object is a permanent magnet, 
it is assumed that the magnetic force is proportional to the 
voltage applied to the electromagnet. Analytical 
expression of the exerted magnetic force due to the object’s 
position is very complex and nonlinear. Refer to the analytical 
expression derived in [6] for example. Such a complex 
expression is not preferred in designing controllers for 
magnetic levitation systems. Therefore, in existing 
literatures dealing with the control of magnetic levitation 
systems, simplified or experimentally calibrated 
characteristics on magnetic force are preferred. In [1, 5, 11, 
13, 15], it is assumed for simplicity that the magnetic 
force is inversely proportional to the square of the sum of 
the displacement of the levitation object and a system-
dependent constant. In [2, 3, 6], the magnetic force is 
characterized such that it is inversely proportional to a 
polynomial function on the displacement of the levitation 
object. The polynomial function is obtained through 
experimental calibration including least square fitting. The 
calibration approach is somewhat heuristic but well 
characterizes the magnetic force. However, it should be 
mentioned that the obtained characteristics are only local 
in a sense that it works good when the mass of the 
levitation object is around a certain value. This is because 
the experimental data used for the calibration of the 
polynomial function is obtained with respect to a 
levitation object of specific mass. Furthermore, the 
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experiment takes a lot of time because it requires 
repetitive actions and continuous human attention to catch 
the values needed for calibration. 

In this paper, we propose an improved model for 
magnetic force exerted on the levitation object. The 
proposed model removes two main drawbacks of the 
exiting calibration-based models: locality, and tedious 
experimental procedure. We do not restrict the model to 
any prescribed functional form unlike the existing models. 
The function is not explicitly expressed. Instead, we utilize a 
2D lookup table to represent the function numerically. In 
addition, we propose specially devised measurement 
equipment, which speeds up the experimental procedure. 
Modeling automation will be possible with a slight 
modification to the equipment. The validity of the 
proposed model is illustrated by comparing the 
performance of a controller adopting the proposed model 
with that of a controller adopting the existing model. 

The rest of the paper is organized as follows: Section 2 
introduces an experimental prototype of a magnetic 
levitation system and defines a problem statement to be 
considered in the paper. In Section 3, we propose a new 
model and modeling method using specially devised 
measurement equipment. In Section 4, we design sliding 
mode control adopting the proposed model and give 
experimental results for illustration. Finally in Section 5, 
we make conclusions. 

 
 

2. Experimental Prototype and Problem Statement 
 
A schematic diagram of the magnetic levitation system 

used in the experiment is shown in Fig. 1. The levitation 
object is a cylindrical aluminum block with a strong 
magnet embedded on top of it, as shown in Fig. 2. An 
infrared (IR) emitter and phototransistors are used to 
determine the position of the levitation object. Five 
phototransistors are used in order to make a wide sensing 
range available. Voltage outputs from five phototransistors 
are fed to a signal conditioning circuit depicted in Fig. 3. 
The circuit yields a single voltage output, sV , which is 
converted to digital data through a 12-bit AD converter. A 
computer-based controller computes the control using the 
digital position information at a sample rate of 1 kHz. 
Magnetic control force is generated from a lab-built 
electromagnet by adjusting the voltage applied to the 
electromagnet according to the computed control. 

Using the fundamental principle of dynamics, the 
dynamic equation of the magnetic levitation system is 
given by 

,Fx g
m

= −                (1) 

 

 
Fig. 1. Schematic diagram of a magnetic levitation system 

 

 
Fig. 2. Levitation object with a permanent magnet attached 

 

 
Fig. 3. Signal conditioning circuit 

 
Table 1. Existing models of the magnetic force 

Reference [2] [3] [6] 

Levitation 
object 

Permanent 
magnet 

Permanent 
magnet 

Ferromagnetic 
ball 

Model 
function ( )

VF
a x

=
( )
iF

a x
=  

2

( )
iF

a x
=  

 
where m  is the mass of the levitation object, x  is the 
displacement from the top of the levitation object to the 
bottom of the electromagnet, g is the gravitational 
constant, and F is the magnetic force exerted on the 
levitation object by the electromagnet. A positive value of 
F implies attracting force and negative value repelling force. 
One may want to find the analytical expression of the 
magnetic force exerted on the levitation object by 
considering the magnetic field, as considered in [6]. 
However, the analytical expression of the magnetic force is 
very complex for the lab-built experimental apparatus, as 
mentioned in [2, 6]. Therefore, in some existing studies, the 
magnetic force characteristics are experimentally 
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calibrated as functions of the position of the levitation 
object and the electrical value (voltage or current). Table 1 
compares the model functions of the magnetic force used 
in the existing studies, where ( )a x  is a polynomial 
function of x, that is, 0 1( ) n

na x a a x a x= + + + . n  is the 
order of the polynomial function and 0a  to na  are the 
coefficients of the polynomial function to be determined 
experimentally. The experiment performed to find the 
coefficients consists of determining the minimum voltage 
(or current) to pick up the levitation object of mass m  at 
various positions. The force required to pick up the 
levitation object of mass m  is mg [N]. Therefore, we 
can write 

 
2

2
0 1 2

(or or ) ,n
n

V i iF mg
a a x a x a x

= =
+ + + +

 

 
which can be rewritten into 

 
2

2
0 1 2

(or or ) .n
n

V i i a a x a x a x
mg

= + + + +      (2) 

 
The data are then least-squares fitted to determine the 

order and the coefficients of the polynomial function. Fig. 4 
depicts the control block diagram in which a conventional 
model adopted in [2] is utilized. Since the voltage to the 
electromagnet can be manipulated, the control force 
obtained through the control algorithm is converted to the 
voltage required to generate that force using the relation 

( )V a x F= . In case of [3, 6], the current required to generate 
the magnetic force is obtained using the inverse relations. The 
obtained current is actually generated by a high-bandwidth 
current loop. 

It should be mentioned that existing models and modeling 
methods have two drawbacks. Firstly, the controller designed 
using the existing models are not robust against the mass 
variation of the levitation object. This is because the 
coefficients of the polynomial function, ( )a x , are 
dependent on the mass of the levitation object used in the 
calibration experiment. The model obtained through 
existing methods is valid only when the actual mass of the 
levitation object is near the value used in the calibration 
experiment. Hence, if one tries to levitate an object the 
mass of which is much different from the one used in the 
calibration experiment, the controller is very likely to 
show poor performance or even worse to destabilize the 
system. Secondly, the experimental procedure is not 
appropriate for automation because one should keep an 
eye on the levitation object in order to catch the moment 
when the object is picked up. 

 
Fig. 4. Control block diagram using the conventional 

magnetic force model 
 

The purpose of this paper is to propose a new model of 
the magnetic force in magnetic levitation systems and a 
new modeling method. The proposed method greatly 
removes the drawbacks of the existing methods, which 
will be well illustrated through experiments later in the 
paper. In the next section, we propose a new model and 
modeling method. We also introduce lab-built 
measurement equipment that is used in the modeling 
procedure. 

 
 

3. New Model and Modeling Method 
 

Fx g
m

= −

( , )V F x= Λ

 
Fig. 5. Control block diagram using the proposed magnetic 

force model 
 

Table 2. Meaning of part symbols 
Symbol Meaning 

a rotating handle 
b linear motion shaft 
c lead screw 
d mount table 
e load cell 
f mount table for position sensor modeling 
g incremental rotary encoder 
h screw nut 
i linear bushing 
j adaptor for attaching a load cell 
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Fig. 6. Lab-built measurement equipment: schematic diagram 

(left) and picture (right) 
 

 
Fig. 7. A Lab-built magnetic levitation system 

 
As mentioned in the previous section, the conventional 

model is effective only when the mass of the levitation 
object is near the mass of the object used in the calibration 
procedure. In this section, we propose a new model, 
described by the function ( , )F V x=∑ , in order to remove 

the drawback of the conventional model. The function 
( , )F V x=∑  maps the magnitude of the magnetic force 

exerted on the object located at displacement x , when 
the voltage input to the electromagnet is V  volts. It is 
noted that the proposed model ( , )F V x=∑  reveals global 

characteristics of the magnetic force. We can also think of 
the function ( , )V F x= Λ , which maps the voltage input 

required for the electromagnet to exert the magnetic force 
F  on the levitation object located at displacement x . 
Analytic representation of ( , )F V x=∑  and ( , )V F x= Λ  

is hardly available for lab-built electromagnets and thus 
the approach taken in this paper is to represent those 
functions using a 2D lookup table constructed from 
measured experimental data.  

Fig. 5 depicts the control block diagram using the 
proposed model of the magnetic force. The control 
algorithm computes the required magnetic force based on 
displacement x . The computed magnetic force F  is fed 
to a 2D lookup table, which is a numerical representation 
of ( , )V F x= Λ , in order to find the voltage input to the 

electromagnet required to generate the force in reality. 
Since the model describes the global characteristics of the 
magnetic force better, it is natural to expect that the 
resulting control performances are better. The question is 
how to obtain the relation ( , )F V x=∑  and ( , )V F x= Λ . 

For this purpose, we utilize specially devised 
measurement equipment. Fig. 6 shows the schematic 
diagram and real picture of the equipment. Table 2 
explains the meaning of the part symbols given in Fig. 6. 

For convenience of explanation, we use symbols 
surrounded by parentheses in order to indicate parts in the 
equipment. The lead screw (c) converts rotary motion of 
the rotating handle to linear motion of the mount table (d). 
The advance per revolution of the lead screw used in the 
equipment is 4 [mm]. A rotary encoder (g) is installed at 
the end of the lead screw in order to measure the angular 
displacement. It generates 4000 pulses per revolution. 
Therefore, the linear motion of the mount table can be 
measured at 1 [ mμ ] resolution. A small mount table (f) 
can be attached to the table (d) at right angle for position 
sensor modeling. A load cell (e) can also be attached to the 
mount table using an adaptor block (j). A load cell is an 
electronic transducer that is used to convert a force into a 
measurable electrical output. The load cell used in this 
paper has the measurement range of 3 Kg. A lab-built 
magnetic levitation system shown in Fig. 7 is utilized as a 
target to which the proposed modeling method is to be 
applied. 

 

 
Fig. 8. Conceptual diagram for position sensor modeling 

experiment 
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Fig. 9. Experimentally obtained relation x and VS 
 

 
Fig. 10. Conceptual diagram for magnetic force modeling 

experiment 
 
Before we model the magnetic force, we model the 

characteristics of the position sensor implemented in 
combination of an IR emitter and phototransistors (see Fig. 
1). Fig. 8 describes the conceptual diagram of the 
experimental setup for position sensor modeling. We 
detach a load cell (e) and adaptor block (j) from the mount 
table (d). We fix an aluminum block on top of the small 
mount table (f) such that it can block infrared rays emitted 
from the IR emitter. The experimental procedure for 
position sensor modeling is as follows: 

 
 
Step 1. Move up the mount table by adjusting the 

rotating handle until the aluminum block hits 
the bottom of the electromagnet. Then, set 

0x = . 
Step 2. Lower the mount table by adjusting the rotating 

handle and save the displacement data and sV .  
 

 

The electromagnet is not activated at this experiment. 
Instead, the IR emitter and phototransistors should be 
turned on. The displacement data can be obtained from the 
rotary encoder. Sensor voltage output is obtained at the 
end of a signal conditioning circuit (See Fig. 3). Fig. 9 
shows the experimentally obtained relation between 
displacement x and corresponding sensor voltage output VS. 
Since the phototransistors are not ideally installed, the 
resulting relation is not smooth. If the relation is 
represented in a smooth curve, a polynomial approximation 
method may be used as in [2] in order to model sensor 
characteristics. It is observed that the relation corresponding to 
14[mm] 20[mm]x≤ ≤  is represented in a smooth curve. 
However, the global relation is not represented in a 
smooth curve and thus a polynomial approximation 
method is not appropriate in our case. Instead, we choose 
to represent the relation given in Fig. 9 through a 1D 
lookup table. Now we can retrieve the absolute position of 
the levitation object using the voltage output of the 
position sensor. 

Then we are ready to perform the experiment for 
magnetic force modeling. Fig. 10 depicts the conceptual 
diagram of the experimental setup. For this experiment, 
the load cell (e) is attached to the mount table (d) using 
the adaptor block (j). A levitation object given in Fig. 2 is 
fixed to the load cell (e) using bolts. We assume that the 
displacement and voltage applied to the electromagnet has the 
following range: 

 

min max min max,x x x V V V≤ ≤ ≤ ≤ . 
 
The range limitation on the displacement x  comes 

from the fact that validity of the position sensor is limited 
to a certain range. We propose the following experimental 
procedure for magnetic force modeling: 

 
 
Step 1. Set the applied voltage minV V= . 

Step 2. Lower the levitation object to maxx . 
Step 3. Move the levitation object slowly from 

maxx  to minx  and save the measured force and 
displacement data. 
Step 4. Set the applied voltage V V Vδ= + . 

Step 5. Check whether maxV V> . If yes, stop. If 
not, go to Step 2. 

 
 
Force data is measured through the load cell and the 
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displacement data is retrieved from the 1D lookup table 
constructed from the procedure mentioned above. Fig. 11 
indicates a 3D plot drawn from the data gathered through 
the experimental procedure mentioned above. We chose 

min 14x = [mm], max 22x =  [mm], 0.5δ = [volt], min 0V =  
[volt], and max 25V =  [volt]. The function ( , )V F x= Λ  
can be approximately constructed from the data presented 
in Fig. 11 using interpolation. Fig. 12 shows the mapping 
relation of ( , )V F x= Λ  using a 3D plot. The flat surface 
in Fig. 12 is due to the voltage saturation at 25 volts. 

 

 
Fig. 11. Data obtained through the proposed modeling 

method 
 

 
Fig. 12. Experimentally obtained magnetic force model, 

( , ).V F x= Λ  
 
Remark 3.1. We can assume ( , )F i x=∑  and 

( , )i F x= Λ . The proposed modeling method can also be 
applied to obtain that relation. For this experiment, we 
need an additional current sensor. We chose 

( , )F V x=∑  and ( , )V F x= Λ  for simplicity. 

Remark 3.2. Because we use a load cell to measure the 
force, continuous human attention required in 
conventional modeling procedure is not necessary in the 
proposed modeling procedure. If we use a motor to rotate 
the lead screw in the measurement equipment, the 
experimental procedure given above can be made fully 
automated by an appropriate programming. As a result, 
the proposed modeling method removes the tedious 
procedure in the conventional modeling method. 

 
 
4. Controller Design and Experimental Results 
 
In this section, we design a controller for our lab-built 

magnetic levitation system and apply two magnetic force 
models, i.e., conventional model and proposed model, in 
order to show the validity of the proposed model through 
comparison. We chose to use sliding mode control among 
various control methods. Sliding mode control is a well-
known control method for nonlinear systems [12, 14]. We 
adopt the control structure taken in [2]. Let us define the 
position reference to be dx . Then, the tracking error is 
given by 

 
( ) de t x x= − . 

Choose the sliding surface as follows: 
 

1 2 0
( ) ( ) ( ) ( ) ,

t
S t e t c e t c e dτ τ= + + ∫  

 
where 1 0c >  and 2 0c >  are design parameters. As 
widely known, the attraction condition of the ( ) 0S t =  
manifold is: 

   
( ) ( ) 0S t S t < . 

 
The above attraction condition is satisfied by selecting the 

control input such that ( ) sign( ( ))S t S tη= − , where 0η >  is a 
design parameter. The time derivative of ( )S t  is 

 

1 2

1 2

1 2

( ) ( ) ( ) ( )
( ) ( )

( ) ( ).

d

d

S t e t c e t c e t
x x c e t c e t

Fg x c e t c e t
m

= + +
= − + +

= − − + +

 

Let’s take F  as follows: 
 

1 2[ sign( ( ))],c dF m g x c e c e S tη= − + + +  
 

where cm  is the mass of the object that the control 
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intends to levitate. If cm m= , where m  is the actual mass of 
the levitation object, then ( ) ( ) | ( ) | 0S t S t S tη= − <  for ( ) 0S t ≠ . 
This implies that manipulating the electromagnet such that it 
exerts the magnetic force given by (3) on the levitation 
object makes the tracking error e  approach zero as time 
passes. Since we can manipulate the voltage applied to the 
electromagnet, the control law should be represented in 
terms of voltage input to the electromagnet. 

Suppose that we use the conventional magnetic force 
model, i.e., / ( )F V a x= . The control law is represented 
as follows: 

 
1 2( ) [ sign( ( ))].c dV a x m g x c e c e S tη= − + + +    (4) 

 
On the other hand, the proposed magnetic force model is 

represented by ( , )V F x= Λ . Therefore, the control law 
adopting the proposed model is represented as follows: 

 
1 2( [ sign( ( ))], ).c dV m g x c e c e S t xη= Λ − + + +   (5) 

 
As already mentioned, ( , )Λ ⋅ ⋅  is represented using a 2D 

lookup table. In order to alleviate the chattering problem 
inherent in sliding mode control, sign( ( ))S t  function can 
be replaced by sat( ( ))S t  defined as follows: 

 
( ( )) , | ( ) |

sat( ( ) / )
( ) / , | ( ) |

sign S t if S t
S t

S t if S t
φ

φ
φ φ

≥⎧
= ⎨ <⎩

 

 
where 0φ >  is a design parameter. 
 

Remark 4.1. Assume that cm m≠ , which implies that 

there exists uncertainty in mass. Then ( ) ( ) 0S t S t <  may 

not hold, which implies the stability is not guaranteed. 
Because the controller from (4) and (5) both include the 
term cm , both controllers can suffer from degradation of 

the control performance due to the mass uncertainty. 
However, the control form adopting the conventional model 
is more vulnerable to performance degradation because 

( )a x  can closely characterize the magnetic force when 

the actual mass of the levitation object is close to the mass 
of the object used in the calibration experiment. On the other 
hand, ( , )Λ ⋅ ⋅  globally characterizes the magnetic force. As a 

result, it is expected that the control given by (5) is more 
robust against the variation in the mass of the levitation 
object, which will be shown through experiments later in 
the paper. 
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Fig. 13. Model comparison for 90 [ ]m g=  (dotted: 

conventional, solid: proposed) 
 

0.015 0.0155 0.016 0.0165 0.017 0.0175 0.018 0.0185 0.019
6

8

10

12

14

16

18

20

22

Distance[m]

V
ol

ta
g
e[

V
]

 
Fig. 14. Model comparison for 80 [ ]m g=  (dotted: 

conventional, solid: proposed) 
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Fig. 15. Model comparison for 70 [ ]m g=  (dotted: 

conventional, solid: proposed) 
 

In order to show the validity of the proposed model, we 
compare the performance of a controller adopting the 
proposed model with that of a controller adopting a 
conventional model. The polynomial ( )a x  for the 

conventional model is obtained through calibration 
experiment using the object with 90 [ ]m g= . ( )a x  is 

obtained as follows: 
2( ) 630590 17529 130.91.a x x x= − +  
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Since the conventional model assumes ( )V a x F= ,  the 

voltage required to levitate the object with mass [ ]m g  at 

the displacement of x  is computed as follows: 
 

( ) 0.001 9.8.V a x m= × × ×  

 
However, the above relation is valid only when we 

levitate the object with 90 [ ]m g= . If we levitate the 

object of different mass, the above relation will yield the 
voltage inappropriate for levitating that object. Closed 
loop control may mitigate the bad effect due to this model 
inaccuracy. However, it is naturally expected that the control 
performance will deteriorate. Figs. 13 and 14 compare 
relations on voltage vs. displacement obtained from the 
conventional model and the proposed model, respectively, 
for three different cases of mass. In case of 90 [ ]m g= , 

both models reveal similar characteristics (See Fig. 13). 
However, the characteristics of the conventional model 
differ much from those of the proposed model when 

90 [ ]m g≠  (See Fig. 14 and Fig. 15). These clearly show 

that the conventional model only catches the local 
characteristics of the magnetic force in a sense that it is 
effective only when the levitation object has specific mass. 
Let us move on to real control experiments. 

In order to compare the control performances, we used 
three levitation objects with 90 [ ]m g= , 80 [ ]m g= , and 

70 [ ]m g= . Because ( )a x  is obtained assuming 

90 [ ]m g= , we set 90 [ ]cm g=  for controller design. 

Firstly, we used the levitation object with 90 [ ]m g= . 

Since 90 [ ]cm g= , there is no uncertainty in mass. The 

tracking responses of the controller adopting two different 
models are compared in Fig. 16. It is observed that there is 
little difference in the tracking responses. This little 
difference is well expected because ( )a x  is obtained 

using the object with 90 [ ]m g= . Therefore, the 

conventional model also well characterizes the magnetic 
force. Secondly, we used the levitation object 
with 80 [ ]m g= . Fig. 17 compares the tracking responses of 

both controllers. It is seen that the controller adopting the 
conventional model exhibits oscillatory response. On the 
other hand, the controller adopting the proposed model 
maintains good tracking response despite the mass 
uncertainty. Finally, we used the levitation object with 

70 [ ]m g=  and Fig. 16 compares the tracking responses. 

It is seen that the controller adopting the conventional 

model diverges. On the other hand, the controller adopting 
the proposed model still maintains acceptable tracking 
response. These three experiments clearly show that the 
proposed model characterizes the magnetic force more 
closely than the conventional model. The resultant 
controller is shown to be more robust against the variation 
in the mass of the levitation object.  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
16

16.5

17

17.5

18

18.5

19

19.5

20

Time(s)

D
is

ta
n
ce

(m
m

)
 

 

reference

proposed model
existing model

 
Fig. 16. Tracking response comparison. ( 90 [ ]cm m g= = ). 
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Fig. 17. Tracking response comparison. ( 90 [ ],cm g=  

80[ ]m g= ). 
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Fig. 18. Tracking response comparison. ( 90 [ ],cm g=  

70[ ]m g= ). 
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5. Conclusions 
   
In this paper, we proposed a new model of the magnetic 

control force in magnetic levitation systems. The new 
model is represented numerically using a 2D lookup table. 
Unlike the conventional model that reveals the local 
characteristics only, the proposed model has a feature that 
it shows the global characteristics of the magnetic force 
satisfactorily. In order to construct the proposed model 
through experiments, we specially devised new 
measurement equipment. An experimental procedure to 
construct the model using the equipment was presented. 
The proposed procedure removes the drawbacks of the 
existing experimental procedures. For illustration of the 
validity of the proposed model, we applied it in designing a 
sliding mode controller for a lab-built magnetic system. 
The controller based on the proposed model was shown to 
be more robust against mass variation than the controller 
adopting the conventional model. 

 
 

References 
 

[1] N.F. Al-Muthairi and M. Zribi, “Sliding control of a 
magnetic levitation system,” Mathematical Problems in 
Engineering, Vol. 2, pp. 93-104, 2004.  

[2] D. Cho, Y. Kato and D. Spilman., “Sliding mode and 
classical control magnetic levitations systems,” IEEE 
Control Systems Magazine, Vol. 13, pp. 42-48, 1993.  

[3] J.S. Choi and Y.S. Baek, “A single DOF magnetic 
levitation system using time delay control and 
reduced-order observer,” KSME International Journal, 
Vol. 16, No. 12, pp. 1643-1651, 2002.  

[4] M. Dussaux, “The industrial applications of the 
active magnetic bearings technology,” Proceedings of 
the 2nd Int. Symp. Magnetic Bearings, pp. 33-38, 
1990. 

[5] M. Fujita and T. Namerikawa, “ μ -Synthesis of an 
electromagnetic suspension systems,” IEEE Transactions on 
Automatic Control, Vol. 40, No. 3, pp. 530-536, 1995.  

[6] A.E. Hajjaji and M Ouladsine, “Modeling and 
nonlinear control of magnetic levitation systems,” 
IEEE Transactions on Industrial Electronics, Vol. 48, 
No. 4, pp. 831-838, 2001.  

[7] B.Z. Kaplan and D. Redev, “Dynamic stabilization of 
tuned-circuit levitators,” IEEE Transactions on 
Magnetics, Vol. Mag-12, pp. 556-559, 1976.  

[8] D.A. Limbert, H.H. Richardson and D.N. Wormley, 
“Controlled characteristics of ferromagnetic vehicle 
suspension providing simultaneous lift and guidance,” 
Trans. ASME, J. Dyn. Syst. Meas. Control, Vol. 101, pp. 
217-222, 1990.  

[9] F.J. Lin, L.T. Teng, and P.H. Sheh, “Intelligent 
Adaptive Backstepping Control System for Magnetic 
Levitation Apparatus,” IEEE Transactions on Magnetics, 
Vol. 43, No. 5, pp. 2009-2018, 2007.  

[10] J.E. Pad, “State variable constraints on the performance of 

optimal Maglev suspension controllers,” Proceedings of 
IEEE Conf. Control Applications, pp. 124-127, 1994.  

[11] P.S. Shiakolas, S.R. Van Schenck, D. Piyabongkarn and 
I. Frangeskou, “Magnetic levitation hardware-in-the-
loop and MATLAB-based experiment for 
reinforcement of neural network control concepts,” IEEE 
Trans. Edu., Vol. 47, pp. 33-41, 2004.  

[12] J.E. Slotine and W. Li, Applied Nonlinear Control, 
Prentice-Hall, 1991.  

[13] D.L. Trumper, “Linearizing control of magnetic 
suspension systems,” IEEE Transactions on Control 
Systems Technology, Vol. 5, No. 4, pp. 427-438, 1997.  

[14] V.I. Utkin, “Variable structure systems with sliding 
mode,” IEEE Trans. Auto. Control, Vol. AC-22, pp. 
212-222, 1977.  

[15] Z.J. Yang and M. Tateishi, “Adaptive robust nonlinear 
control of a magnetic levitation system,” Automatica, 
Vol. 37, pp. 1125-1131, 2001.  

 
 

Young Sam Lee  
He received his M.Sc degree in 
Electrical Engineering from Inha 
University, Inchon, Korea, in 1999. 
He received his Ph.D. degree in 
Electrical Engineering from Seoul 
National University, Seoul, Korea, 

in 2003. He is currently working as an Associate 
Professor in the School of Electrical Engineering at 
Inha University, Inchon, Korea. His research interests 
are control application, embedded systems, and 
robotics.  

 
 

Ji-Hyuk Yang  
He received his M.Sc. degree in 
Electrical Engineering from Inha 
University, Inchon, Korea, in 2008. 
He is currently pursuing his Ph.D. 
degree in Electrical Engineering at 
Inha University, Inchon, Korea. His 

primary research interest lies in the development of 
rapid control prototyping environment.  

 
 

Su-Yong Shim  
He received his B.Sc. degree in 
Electrical Engineering from Inha 
University, Inchon, Korea, in 2008. 
He is currently pursuing his M.Sc. 
degree in Electrical Engineering at 
Inha University, Inchon, Korea. His 

research interests are mechatronics and embedded systems. 


