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In this paper, we propose a minimum variance finite impulse response (FIR) filter with a
guaranteed H1 error bound. The proposed FIR filter is required in advance to make use
of only inputs and outputs on the recent finite time so that its impulse response has a finite
duration, or it has finite memory with respect to past data. From such requirement, a trans-
fer function from the external noises to the estimation error is first obtained, and then the
corresponding estimation error variance is minimized with respect to the filter gains while
keeping its H1 norm bounded. The constrained minimization problem is represented with
linear matrix inequalities (LMI) that can be efficiently solved using convex programming
techniques. It is shown through application to the current measuring circuitry in the mag-
netic levitation system that the proposed FIR filter is more robust against temporary uncer-
tainties than an existing mixed H2=H1 IIR filter with a guaranteed H1 error bound.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Estimation problems have been widely dealt with in
sciences and engineering areas. Specially, state estimation
has been considered as an important research issue for dy-
namic systems since full information on the state is not
available in most cases. For state estimation, two types of
filters, i.e., finite impulse response (FIR) and infinite im-
pulse response (IIR) filters, have been researched for a long
time and their properties become generally known.

Recently, FIR filters for state estimation have received a
lot of attention due to its good inherent properties arising
in the FIR structure as its heavy computation burden is
alleviated by the fast computer technologies. Furthermore,
some trials have been made to extend the FIR filters even
to more complicated nonlinear and hybrid systems. It is
practically acknowledged and shown via simulations that
the FIR filters are more robust than IIR filters when applied
to systems with temporary modeling uncertainties and
round-off errors in computation. Since the FIR filters put
much weight on the recent data and discard old data, they
are likely to avoid divergence and poor tracking. Addition-
ally, FIR filters are designed from finite dimensional opti-
mization, and hence multi criteria and any constraints
can be easily applied. Until now, such nice FIR filters have
employed a minimum variance criterion that is very trac-
table for mathematical analysis and has useful physical
meanings by providing the dimension of energy and putt-
ing much weights on large errors [1–9].

As another useful and commonly-used criterion, the H1
criterion is often used for the worst case design, which is
roughly defined by a gain between the total energies of
the disturbances and the estimation errors [10–12]. In or-
der to optimize the performance on the average and dimin-
ish the effect of the worst case simultaneously, the H1
criterion has often been employed together with a mini-
mum variance criterion in designing IIR filters [13–16].
The authors proposed FIR filters for both the H1 and min-
imum variance criteria under the strong assumption that a
system matrix is nonsingular [17]. However, to the best of
the authors’ knowledge, there is no result on the minimum
variance FIR filters with a guaranteed H1 bound without
the nonsingularity condition of the system matrix.
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In this paper, an FIR filter for estimation of the state xk

at time k is obtained to be linear with inputs ukþ� and out-
puts ykþ� on the recent finite time ½k� N; k� 1� so that its
impulse response has a finite duration and hence it can
be represented as

x̂k ¼
Xk�1

i¼k�N

Hk�iyi þ
Xk�1

i¼k�N

Lk�iui; ð1Þ

for some gains Hk�i and Lk�i. Note that N is the order of the
filter, and Hk�i and Lk�i will be determined according to the
criterion. From a linear filter with the finite impulse re-
sponse as in (1), a transfer function from external noises
to the estimation error is first obtained, and then the cor-
responding estimation error variance is minimized with
respect to filter gains, Hk�i and Lk�i, under the restriction
that the H1 error bound is less than a prescribed value.
This optimization problem is converted to a constrained
minimization one represented with linear matrix inequal-
ities (LMI) that can be efficiently solved using convex pro-
gramming techniques. Unlikely the existing result [17], the
nonsingularity condition of the system matrix is not re-
quired, which leads to more stable numerical computation
and more applications.

To demonstrate the validity, we apply the proposed FIR
filter to the current measuring circuitry in the magnetic
levitation system. It is shown that the proposed FIR filter
is more robust against temporary uncertainties than an
existing H2=H1 IIR filter with a guaranteed H1 error
bound.

This paper is organized as follows. In Section 2, a mini-
mum variance FIR filter with an H1 error bound is repre-
sented with LMIs. In Section 3, a real application to the
current measuring circuitry is given. Finally, the conclu-
sions are presented in Section 4.

2. A minimum variance FIR filter with an H‘ error
bound

Consider a linear discrete-time state space model:

xkþ1 ¼ Axk þ Buk þ Gwk;

yk ¼ Cxk þ Dwk;
ð2Þ

where xk 2 Rn is the state, uk 2 Rl is the input, yk 2 Rq is
the output, and wk 2 Rp is a vector disturbance containing
both process noises and measurement noises, respectively.
The pair ðA;CÞ is observable. wk is assumed to have unit
variance. When the H1 error bound is computed, wk is con-
sidered as a deterministic disturbance, which belongs to l2

space. The following system with independent noise
sources

xkþ1 ¼ Axk þ Buk þ Gwk;

yk ¼ Cxk þ Dvk;
ð3Þ

can be transformed as follows:

xkþ1 ¼ Axk þ Buk þ G 0½ �
wk

vk

� �
;

yk ¼ Cxk þ 0 D½ �
wk

vk

� �
:

ð4Þ
which leads to the model (2). We can say that the model
(2) is not limited.

The FIR filter (1) can be written as follows:

x̂k ¼ HYk�1 þ LUk�1; ð5Þ

where H; L; Yk�1, and Uk�1 are given by

H , ½HN HN�1 � � � H1 �;
L , ½ LN LN�1 � � � L1 �;

Uk�1 , ½uT
k�N uT

k�Nþ1 � � � uT
k�1 �

T
;

Yk�1 , ½ yT
k�N yT

k�Nþ1 � � � yT
k�1 �

T
;

and the order of the filter, N is assumed to be greater than
or equal to the system order n. Why we need this assump-
tion, N P n, will be explained later on. By using the follow-
ing definitions:

eCN ,

C

CA

..

.

CAN�1

266664
377775;

eBN ,

0 0 0 0 0
CB 0 � � � 0 0

CAB CB � � � 0 0
..
. ..

. . .
. ..

. ..
.

CAN�2B CAN�3B � � � CB 0

26666664

37777775;

eGN ,

0 0 0 0 0
CG 0 � � � 0 0

CAG CG � � � 0 0
..
. ..

. . .
. ..

. ..
.

CAN�2G CAN�3G � � � CG 0

26666664

37777775;

eDN , diag fD;D; � � � ;Dg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N

;

Lb , AN�1B AN�2B � � � B
� �

;

Lg , AN�1G AN�2G � � � G
� �

;

Wk�1 , wT
k�N wT

k�Nþ1 � � � wT
k�1

� �T
;

the recent measurements, i.e., Yk�1, over ½k� N; k� and the
current state, i.e., xk, can be represented by

xk ¼ ANxk�N þ LbUk�1 þ LgWk�1; ð6Þ

Yk�1 ¼ eCNxk�N þ eBNUk�1 þ ðeGN þ eDNÞWk�1: ð7Þ

Replacing Yk�1 in (5) with (7) and arranging terms yield

x̂k ¼ HeC Nxk�N þ ðHeBN þ LÞUk�1 þ HðeGN þ eDNÞWk�1: ð8Þ

The H1 error bound of a filter is given as

sup
wi

P1
i¼Nðxi � x̂iÞTðxi � x̂iÞP1

i¼NwT
i wi

; ð9Þ

for nonzero disturbance belonging to l2 space. Further-
more, the estimation error, x̂i � xi, of a H1 filter should
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approach zero asymptotically for zero disturbance, i.e.,
wi ¼ 0. Since we are concerned with a guaranteed finite
H1 error bound, we make xk in (6) equal to x̂k in (8) for zero
disturbance, Wk�1 ¼ 0. Otherwise, the H1 error bound goes
to infinity. A guaranteed finite H1 error bound requires the
following conditions:

HeCN ¼ AN
; L ¼ Lb � HeBN : ð10Þ

Finally, we rewrite the FIR filter in (5) as

x̂k ¼ HYk�1 þ ðLb � HeBNÞUk�1: ð11Þ

It is noted that once H is obtained, L is automatically com-
puted from (10).

From (6), (7), and (11), the estimation error, ek ¼ x̂k � xk,
can be represented as follows:

ek ¼ x̂k � xk;

¼ HYk�1 þ ðLb � HeBNÞUk�1 � ANxk�N � LbUk�1

� LgWk�1;

¼ ½HðeGN þ eDNÞ � Lg �Wk�1;

ð12Þ

where the last equality comes from the conditions (10).
Wk�1 in (12) can be written as

Wk ¼ AuWk�1 þ Buwk; ð13Þ

where Au and Bu are given by

Au ¼

0 I 0 � � � 0

0 0 I . .
. ..

.

..

. ..
. . .

. . .
.

0
0 0 � � � 0 I
0 0 � � � 0 0

266666664

377777775; Bu ¼

0
0
0
..
.

I

26666664

37777775: ð14Þ

Putting (12) and (13) together, we have a transfer function
TðzÞ from the disturbances wk to the estimation errors ek,

TðzÞ ¼ ½HðeGN þ eDNÞ � Lg �ðzI � AuÞ�1Bu: ð15Þ

From now on, we will obtain H in (15) so that TðzÞ is
optimized according to the minimum variance criterion
with a prescribed H1 error bound. First, the estimation er-
ror variance is represented in terms of H and the corre-
sponding LMI is obtained for making it possible to make
tractable numerical computation with another constraints.

The estimation error variance is given by

E½eT
k ek� ¼

1
2p

tr
Z p

�p
T�ðejwÞTðejwÞdw

� �
¼ 1

2p
kTðzÞk2: ð16Þ

It is well known that kTðzÞk2 is given by

kTðzÞk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ½HðeGN þ eDNÞ � Lg �P½HðeGN þ eDNÞ � Lg �

T
 �r
:

ð17Þ

where P is the controllability Grammian computed from

P ¼
X1
i¼0

Ai
uBuBT

uðA
T
uÞ

i
;

or from AuPAT
u � P þ BuBT

u ¼ 0 [18]. We can easily see
through simple algebraic calculation that P ¼ I.

By introducing a matrix variable W such that
W > ½HðeGN þ eDNÞ � Lg �½HðeGN þ eDNÞ � Lg �
T
; ð18Þ

we have only to minimize trðWÞ for optimizing the mini-
mum variance criterion since trðWÞ > kTðzÞk2

2. By the Schur
complement, the inequality (18) is equivalent to

W HðeGN þ eDNÞ � Lg

ðeGN þ eDNÞ
T
HT � LT

g I

24 35 > 0: ð19Þ

Since a filter gain matrix H in (19) satisfies HeCN ¼ AN , it is
parameterized by

H ¼ FM þ ANðeCT
N
eCNÞ

�1eCT
N ; ð20Þ

where MT is composed of the bases of the null space of ~CT
N ,

and F is a new matrix variable containing the independent
variables. It is noted that eCT

N
eCN is guaranteed to be nonsin-

gular since ðA;CÞ is observable and N is assumed to be
greater than or equal to n.

Finally, the minimum variance criterion for minimizing
E½eT

k ek� can be represented by

min
F;W

trðWÞsubject to

W NT
N

H I

" #
> 0;

ð21Þ

where NN is defined by

NN , ðFM þ ANðeCT
N
eCNÞ

�1eCT
NÞðeGN þ eDNÞ � Lg : ð22Þ

Through long and tedious calculation, we can show that
the optimal H and cost for the minimum variance criterion
can be represented in a closed-form from a constrained
optimization problem, which is stated in the following
theorem.

Theorem 1. The optimal H for the minimum variance
criterion is given in a closed-form as

H ¼ ANðeCT
NK�1

N
eCNÞ

�1eCT
NK�1

N þ LgðeGN þ eDNÞ
T
K�1

N ½I

� eCNðeCT
NK�1

N
eCNÞ

�1eCT
NK�1

N �

where KN is defined by

KN , ðeGN þ eDNÞðeGN þ eDNÞ
T
;

and the corresponding minimum error variance is

trðHKNHT � 2LgðeGN þ eDNÞ
T
HT þ LgLT

gÞ:
It is noted that the result of Theorem 1 is more general

than that of [19] since the correlation between system and
measurement noises are allowed in this paper.

If we are interested in the minimum variance criterion
only, we can use the result in Theorem 1. However, an
LMI representation in (21) is more convenient for imposing
another constraint such as an H1 error bound. We have
only to add another LMI for an H1 error bound. Next, we
will impose the H1 error bound using the well-known
bounded real lemma.

For the system transfer function GðzÞ ¼ �CðzI � �AÞ�1�B, it
is well known from the bounded real lemma that, given
c > 0, the following two conditions are equivalent:
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(1) kGðzÞk1 < c.
(2) There exists an X > 0 such that
�X XA XB 0
�AT X �X 0 �CT

�BT X 0 �cI 0
0 C 0 �cI

26664
37775 < 0:
From the following correspondences,

�A Au;

�B Bu;

�C  ðFM þ ANðeCT
N
eCNÞ

�1eCT
NÞðeGN þ eDNÞ � Lg ;

we obtain the following LMI for imposing the H1 error
bound:

�X XAu XBu 0
H �X 0 NN

H H �c1I 0
H H H �c1I

26664
37775 < 0; ð23Þ

where NN is defined in (22).
Putting all pieces together, we can formulate the mini-

mum variance FIR filter with a guaranteed H1-norm
bound. The final result is summarized in the following
theorem.

Theorem 2. Given c1 > 0, assume that the following LMI
problem is feasible:
i

V

Fig. 1. A magnetic levitation system.
min
W;S;X>0;F

trðWÞ subject to

W NT
N

H I

" #
> 0;

�X XAu XBu 0
H �X 0 NN

H H �c1I 0
H H H �c1I

26664
37775 < 0:

Then the gain matrix of the minimum variance FIR filter with
guaranteed H1-norm bound, c1, is given by

H ¼ FM þ ANðeCT
N
eCNÞ

�1eCT
N ;

where MT is composed of the bases of the null space of eCT
N.

The minimum variance FIR filter obtained from Theo-
rem 2 allows us to design the optimal FIR filters with re-
spect to the error variance while guaranteeing a
prescribed performance level in the H1 sense. For the fea-
sibility of LMIs, c1 should satisfy c1 P c�1, where c�1 is the
optimal H1-norm of the FIR filter of the form (1). The value
c�1 can be obtained from the LMI (23).

It is noted that as the order of the filter, N, increases, the
performance becomes better. However, the computation
load increases with the order of the filter. There is an inev-
itable trade-off between the performance and the compu-
tation load. It would be desirable to choose the minimum
N insofar as the required performance can be achieved in
terms of H2 and H1 criteria.
In the next section, we give a numerical example to
illustrate the usefulness of the proposed FIR filter.

3. Numerical example

To illustrate the performance of the proposed FIR filter, a
magnetic levitation system in Fig. 1 is taken as a numerical
example. The main purpose of this system is to levitate an
object in the air using an electromagnet. By changing the
voltage input appropriately and hence inducing the current
flowing in the coil, the magnetic force is generated from the
electromagnet such that the object can float in the air.

Driving circuits of electromagnets are usually imple-
mented using an H-bridge circuit in Fig. 2. To protect compo-
nents inside, drivers usually have over-current protection
circuits. One of commonly used methods is to use a shunt
resistor to measure the magnitude of current. Since the driver
circuit is subject to transistor switching noises, we need a filter
to estimate the magnitude of the current. Here, it is shown that
the proposed FIR filter is useful for estimating the current.

To begin with, let us represent the magnetic levitation
system with the state space model (2). The current passing
through the inductor and the resistor associated with the
electromagnet is obtained from the following differential
equation:

iðRþ RsÞ þ L
di
dt
¼ V ; ð24Þ

where i is the current, V is the voltage input, L is the induc-
tance of the electromagnet, R is the resistance of the elec-
tromagnet, and Rs is the resistance of the shunt resistor.
Discretizing the differential Eq. (24) yields

ikþ1 ¼ 1� Rþ Rs

L
D

� �
ik þ

D
L

Vk;

where D is the sampling time. Since the inductance of the
electromagnet is affected by the characteristics of the lev-
itated object, we reflect it in the form of uncertainties and
noises, and hence obtain the following model:

ikþ1 ¼ 1� Rþ Rs

L
Dþ dk

� �
ik þ

D
L

Vk þ 0:01w1;k;

where dk and w1;k �Nð0;1Þ are the parameter uncertain-
ties and the process noises, respectively. The current
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Fig. 2. An electromagnet driver with current measuring circuitry (ADC:
analog-to-digital converter).
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Fig. 3. Current estimation errors: comparison between IIR filters (dotted)
and FIR filters (solid).
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Fig. 4. Current estimation errors from constant disturbances applied to
the system: comparison between IIR filters (dotted) and FIR filters (solid).
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flowing through the electromagnet is measured indirectly
by measuring the voltage drop across the shunt resistor.
From Kirchhoff’s law, it follows that we have v s ¼ Rsi,
where vs is the voltage drop across the shunt resistor. Since
this voltage drop is measured by an analog-to-digital
converter (ADC), it is reasonable to consider conversion
latency. We reflect this latency as one-step delay, which
leads to v s;kþ1 ¼ Rsik. If the conversion latency of an ADC
is greater than one step size, we can increase two or more
step delay. For example, the measurement equation
ys;kþ2 ¼ Rsik can be used instead of ys;kþ1 ¼ Rsik.

Finally, the overall model is represented in the form of
(2) as follows:

v s;kþ1

ikþ1

� �
¼ 0 Rs

0 1� RþRs
L Dþ dk

� �
v s;k

ik

� �
þ 0

D
L

� �
VðkÞ

þ 0 0
0:01 0

� �
w1k

w2k

� �
;

yk ¼ ½1 0 �
vs;k

ik

� �
þ ½0 0:01 �

w1k

w2k

� �
;

where yk is the voltage measurement obtained through the
ADC and w2k �Nð0;1Þ is the external noise. Physical
values of electric components and the sampling time
are chosen as follows: L ¼ 0:1 ½H�;R ¼ 4 ½X�;Rs ¼ 0:05 ½X�;
D ¼ 0:002.

We designed an FIR filter using Theorem 2 with the
horizon size and an H1 error bound set to 8 and 1.05 c�1,
respectively, where c�1 ¼ 0:1169. The resultant FIR filter
turned out to have kTðzÞk2 ¼ 0:00651 and
kTðzÞk1 ¼ 0:12272, while the conventional mixed H2=H1
IIR filter has kTðzÞk2 ¼ 0:02449 and kTðzÞk1 ¼ 0:10627.
The IIR filter is better than the proposed FIR filter with re-
spect to norm values. However, FIR filters have their own
features such as the robustness against temporary param-
eter variation, compared to IIR filters. To illustrate the ro-
bust performance for unexpected changes or
uncertainties, we assume that the system is subject to tem-
porary parameter variation represented by

dk ¼
0:1; 100 6 k 6 140
0; otherwise

�
:

We apply the constant voltage input, u ¼ 5. Current esti-
mation errors due to the proposed FIR filters in Theorem 2
and the conventional mixed H2=H1 IIR filters [13] are com-
pared in Fig. 3. We can see that the estimation error of the
proposed FIR filter is smaller than that of the IIR filter on
the interval where temporary parameter variation exists.
Moreover, it is shown that the estimation error of the pro-
posed FIR filter converges more rapidly than that of the IIR
filter when temporary parameter variation disappears. So,
the proposed FIR filter can be said to be more robust than
IIR filters when applied to systems with temporary model-
ing errors. Such robust performance improvement comes
from the finite memory structure, or the FIR structure. It
is also observed from the simulation results that FIR filters
have some degraded performance in normal and transient
situations. Practically, robustness comes before degraded
nominal performance.
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To illustrate the performance against deterministic dis-
turbances, we apply constant disturbances w1;k ¼ w2;k ¼ 1.
Actually, this performance is highly related to the H1 error
bound. Fig. 4 compares the current estimation errors of a
conventional mixed H2=H1 IIR filter and the proposed FIR
filter. The figure shows that the proposed FIR filter has
the estimation error as small as that of the IIR filter, which
implies that the proposed FIR filter is as insensitive to con-
stant disturbance as the IIR filter. The transient response of
the proposed FIR filter looks a little poor, which comes
from the fact that FIR filters work N times after the initial
time 0. If an existing IIR filter is adopted in the beginning
when FIR filters do not work well, we can avoid such a
temporary performance degradation.

To be summarized, we can say that the proposed FIR fil-
ter achieves the more robustness against model uncertain-
ties without any sacrifice of the capability with respect to
disturbance rejection.

4. Conclusions

In this paper, a minimum variance FIR filter with a guar-
anteed H1 error bound is proposed without any artificial
condition and it is applied to the current measuring circu-
ity. Since the optimization problem related to the design of
the proposed FIR filter is represented in terms of linear ma-
trix inequalities (LMI), it can be efficiently solved using
convex programming techniques. We suggested a circuit
system as a good application of the proposed filters to
show that FIR structure gives a good robust performance
against model uncertainties and a prescribed H1 error
bound can reduce the effect of the deterministic distur-
bance on the performance. This application would be a
good research topic for improving the current measuring
circuitry.

Since the proposed FIR filter has practical features in
consideration of both the worst case performance and
the average one through the H1 error bound and the min-
imum variance criterion, we believe that many applica-
tions in circuits and systems are waiting to be applied. As
a future work, it would be meaningful to extend the result
of this paper to time varying systems and find more
applications.
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